Soil aggregation and organic carbon under different management systems in the cerrado of Mato Grosso

Authors

  • Ricardo Takao Tanaka Postgraduate Program in Tropical Agriculture, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil https://orcid.org/0009-0001-3983-8711
  • Oscarlina Lúcia dos Santos Weber Department of Soil and Agricultural Engineering, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil https://orcid.org/0000-0002-0625-4904
  • Gilmar Nunes Torres Postgraduate Program in Tropical Agriculture, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil https://orcid.org/0000-0003-4307-415X
  • Josiquele Gomes de Miranda Postgraduate Program in Tropical Agriculture, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil https://orcid.org/0000-0002-4362-5153
  • Eduardo Guimarães Couto Department of Soil and Agricultural Engineering, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil https://orcid.org/0000-0002-5271-9709

DOI:

https://doi.org/10.1590/1983-21252025v3812508rc

Keywords:

Organic matter. Crop rotation. Cover Plants.

Abstract

Soil organic matter is one of the most important indicators of the quality and sustainability of native and cultivated ecosystems, as it influences the chemical and physical properties of the soil, such as cation exchange capacity, aggregation, water retention, and supply of nutrients to plants. This study evaluated the physical properties and distribution of organic carbon in soil aggregates under different management practices. Disturbed and undisturbed soil samples were collected in the 0.0-0.1 m, 0.1-0.2 m, and 0.2-0.3 m layers under conservationist (rainfed and irrigated) and conventional (rainfed) management. The chemical properties and particle size, soil density, and organic carbon content in macro and microaggregates were assessed for the three management types. For conservationist management, in addition to these analyses, the weighted mean diameter, geometric mean diameter, aggregate stability index, and total soil porosity were determined. The data were analyzed using the Kruskal-Wallis test and the t-test, as there was no experimental design, and some of the data did not meet the normality test (Shapiro-Wilk). Soil density and total porosity did not differ for conservationist management (rainfed and irrigated). The irrigated conservationist management exhibited aggregates with larger weighted and geometric mean diameters and a higher aggregate stability index. Conservationist management (rainfed and irrigated) showed higher organic carbon contents in macro and microaggregates.

Downloads

Download data is not yet available.

References

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22: 711-728, 2013.

AMÉZKETA, E. Soil Aggregate Stability: A Review. Journal of Sustainable Agriculture, 14: 83-151, 1999.

BRONIK, C. J.; LAL, R. Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soil in northeastern Ohio, USA. Soil and Tillage Research, 81: 239-252, 2005.

CAMPOS, R.; PIRES, G. F.; COSTA, M. H. Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier. Agriculture, 10: 1-14, 2020.

CASTRO FILHO, C.; MUZILLI, O.; PODANOSCHI, A. L. Estabilidade dos agregados e sua relação com o teor de carbono orgânico num latossolo roxo distrófico, em função de sistemas de plantio, rotações de culturas e métodos de preparo das amostras. Revista Brasileira de Ciência do Solo, 22: 527-538, 1998.

CONCEIÇÃO, P. C. et al. Fracionamento densimétrico com politungstato de sódio no estudo da proteção física da matéria orgânica em solos. Revista Brasileira de Ciência do Solo, 32: 541-549, 2008.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Manual de Métodos de análise de solo. Embrapa Solos. 2. ed. Rio de Janeiro, RJ: EMBRAPA, 1997, 212 p.

FERNANDES, M. M. H. et al. Soil structure under tillage systems with and without cultivation in the off-season. Agriculture, Ecosystems & Environment, 342: 108237, 2023.

FREITAS, L. et al. Estoque de carbono de latossolos em sistemas de manejo natural e alterado. Ciência Florestal, 28: 228-239, 2018.

GONG, J. et al. Effect of irrigation on the soil respiration of constructed grasslands in Inner Mongolia, China. Plant and Soil, 395: 159-172, 2015.

JAMOVI. The Jamovi Project. Open statistical software for the desktop and cloud. (2022). Jamovi. (Version 2.3) [Computer Software]. Disponível em: https://www.jamovi.org. Acesso em: 10 dez. 2023.

KING, A. E. et al. Soil Organic Matter as Catalyst of Crop Resource Capture. Frontiers in Environmental Science, 8: 1-8, 2020.

LAVALLEE, J. M.; SOONG, J. L.; COTRUFO, M. F. Conceptualizing soil organic matter into particulate and mineral‐associated forms to address global change in the 21st century. Global Change Biology, 26: 261-273, 2020.

LOSS, A. et al. Agregação, carbono e nitrogênio em agregados do solo sob plantio direto com integração lavoura-pecuária. Pesquisa Agropecuária Brasileira, 46: 1269-1276, 2011.

NIJMEIJER, A. et al. Carbon dynamics in cocoa agroforestry systems in Central Cameroon: afforestation of savannah as a sequestration opportunity. Agroforestry Systems, 93: 851-868, 2019.

OADES, J. M.; WATERS, A. G. Aggregate hierarchy in soils. Australian Journal of Soil Research, 29: 815-828, 1991.

PEREIRA, M. G. et al. Biogenic and physicogenic aggregates: formation pathways, assessment techniques, and influence on soil properties. Revista Brasileira de Ciência do Solo, 45:01-23, 2021.

PIRES, L. F.; BACCHI, O. O. S. Mudanças na estrutura do solo avaliada com uso de tomografia computadorizada. Pesquisa Agropecuária Brasileira, 45: 391-400, 2010.

RABOT, E. et al. Soil structure as an indicator of soil functions: A review. Geoderma, 314: 122-137, 2018.

REICHERT, J. M.; REINERT, D. J.; BRAIDA, J. A. Qualidade do solo e sustentabilidade de sistemas agricolas. Revista Ciência Ambiental, 27: 29-48, 2003.

ROSSI, C. Q. et al. Vias de formação, estabilidade e características químicas de agregados em solos sob sistemas de manejo agroecológico. Pesquisa Agropecuária Brasileira, 51: 1677-1685, 2016.

SANTINI, N. S. et al. Storage of organic carbon in the soils of Mexican temperate forests. Forest Ecology and Management, 446: 115-125, 2019.

SANTOS, C. A. et al. Changes in soil carbon stocks after land-use change from native vegetation to pastures in the Atlantic forest region of Brazil. Geoderma, 337: 394-401, 2019a.

SANTOS, U. J. et al. Land use changes the soil carbon stocks, microbial biomass and fatty acid methyl ester (FAME) in Brazilian semiarid area. Archives of Agronomy and Soil Science, 65: 755-769, 2019b.

SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5. ed., rev. e ampl. Brasília, DF : Embrapa, 2018. 356 p.

SEBEN JUNIOR, G. F.; CORÁ, J. E.; LAL, R. Soil aggregation according to the dynamics of carbon and nitrogen in soil under different cropping systems. Pesquisa Agropecuária Brasileira, 51: 1652-1659, 2016.

TAVARES, R. L. M. et al. Long term application of pig manure on the chemical and physical properties of Brazilian Cerrado soil. Carbon Management, 10: 541-549, 2019.

TORRES, J. L. R.; RODRIGUES JUNIOR, D. J.; VIEIRA, D. M. D. S. Alterações nos atributos físicos do solo em função da irrigação e do pastejo rotacionado. Irriga, 18: 558-571, 2013.

YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19: 1467-1476, 1988.

ZHENG, H. et al. Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. Plos ONE, 13: 1-18, 2018.

Downloads

Published

12-09-2024

Issue

Section

Scientific Article