Uso de óleos vegetais para melhoria da resistência da madeira ao ataque de térmitas xilófagas

Autores

  • Sara Freitas de Sousa Tapajós Unit, Universidade Federal do Oeste do Pará, Santarém, PA, Brazil https://orcid.org/0000-0002-1305-8514
  • Juarez Benigno Paes Department of Forestry and Wood Sciences, Universidade Federal do Espírito Santo, Jerônimo Monteiro, ES, Brazil https://orcid.org/0000-0003-4776-4246
  • Marina Donária Chaves Arantes Department of Forestry Engineering, Universidade Federal de São João del-Rei, Sete Lagoas, MG, Brazil https://orcid.org/0000-0002-4711-7121
  • Antônio Thiago Soares de Almeida Postgraduate Program in Forest Sciences, Universidade Federal do Espírito Santo, Jerônimo Monteiro, ES, Brazil https://orcid.org/0000-0002-4849-1641
  • Yonny Martinez Lopez Institute of Xingu Studies, Universidade Federal do Sul e Sudeste do Pará, São Félix do Xingu, PA, Brazil https://orcid.org/0000-0001-7141-4823
  • Marcos Alves Nicacio Postgraduate Program in Forest Sciences, Universidade Federal do Espírito Santo, Jerônimo Monteiro, ES, Brazil https://orcid.org/0000-0001-5530-3154
  • Oxandra Roca Rivera Postgraduate Program in Forest Sciences, Universidade Federal do Espírito Santo, Jerônimo Monteiro, ES, Brazil https://orcid.org/0000-0002-3544-9540

DOI:

https://doi.org/10.1590/1983-21252025v3812548rc

Palavras-chave:

Produtos naturais. Proteção da madeira. Térmitas de solo.

Resumo

Há vários compostos para aumentar a resistência natural da madeira, porém eles podem ser nocivos a humanos, animais domésticos e ao meio ambiente. Assim, produtos naturais estão sendo pesquisados, para garantir a sustentabilidade do meio ambiente, a saúde humana, e diminuir a utilização de produtos tradicionais. O objetivo desta pesquisa foi avaliar a eficiência dos óleos de andiroba (Carapa guianenses), copaíba (Copaifera spp.) e pinhão manso (Jatropha curcas) na resistência biológica da madeira de Pinus elliottii a térmitas arborícolas (Nasutitermes corniger). Os óleos de andiroba e copaíba foram oriundos de comunidades do município de Santarém, Pará, e o óleo de pinhão-manso da Fazenda Tamanduá, município de Santa Terezinha, Paraíba. Eles foram utilizados puros e enriquecidos com iodo sublimado (1, 3, e 5% de concentração). Foram avaliados os efeitos da volatilização e lixiviação na eficiência das soluções contra Nasutitermes corniger. As menores perdas de massa e desgaste foram para a madeira impregnada com o óleo de copaíba, tanto puro, como enriquecido com Iodo. Os maiores desgastes foram para as amostras submetidas à lixiviação (nota = 9,33). A mortalidade das térmitas foi 100% ao término do ensaio para todos os tratamentos testados. O óleo de copaíba pode ser uma alternativa ambientalmente amigável proteger a madeira, em especial aquelas a terem contato direto com humanos e animais domésticos, e quando expostas a ambientes com probabilidade de ataques por Nasutitermes corniger, por terem as menores perdas de massa (7.51-6.14%). Porém não exposta a situações quem possam causar lixiviação.

Downloads

Não há dados estatísticos.

Referências

ALMEIDA, A. T. S. Extratos de madeiras amazônicas como preservativo natural e sua influência na cor da madeira de Hevea brasiliensis. 2023. 81 f. Dissertação (Mestrado em Ciências Florestais: Área de Concentração em Tecnologia de Produtos Florestais) - Universidade Federal do Espírito Santo, Jerônimo Monteiro, 2023.

AUGUSTINA, S. et al. Wood impregnation in relation to its mechanisms and properties enhancement. BioResources, 18: 4332-4372, 2023.

AWPA - American Wood Protection Association. E10-22: Laboratory method for evaluating the decay resistance of wood-based materials against pure basidiomycete cultures: soil/block test. AWPA Book of Standards, Birmingham, 2022a. 406-417 p.

AWPA - American Wood Protection Association. E1-22: Laboratory methods for evaluating the termite resistance of wood-based materials: choice and no-choice tests. AWPA Book of Standards, Birmingham, 2022b. 379-498 p.

BESSIKE, J. G. et al. Evaluation of the potentials of Jatropha curcas seed oil and in combination with leaf extracts of Cymbopogon citratus, Ocimum asilicum, and Eucalyptus globulus as wood preservatives against Macrotermes bellicosus termites. Industrial Crops and Products, 195: 116205, 2023.

BROCCO, V. F. et al. Wood color changes and termiticidal properties of teak heartwood extract used as a wood preservative. Holzforschung, 74: 233-245, 2020.

BRODA, M. Natural compounds for wood protection against fungi-a review. Molecules, 25: 3538, 2020.

COPANT - Comisión Panamericana de Normas Técnicas. Descripción de características generales, macroscópicas de las maderas angiospermas dicotiledóneas. COPANT, Buenos Aires, 30, 1974. 1-19 p.

COSTA, A. F.; GONÇALEZ, J. C.; VALE, A. T. Eficiência de um composto de iodo orgânico contra fungos apodrecedores de madeiras e térmitas. Ciência Florestal, 13: 145-52, 2003.

FATIMA, Z.; AHMED, S.; HASSAN, B. Combined effects of neem (Azadirachta indica) and sesame (Sesamum indicum) oil as a wood preservative on subterranean termites in the field. Maderas. Ciencia y Tecnología, 23: 35, 2021.

FREITAS, A. R. Métodos de avaliação de preservativos em laboratório. Preservação de Madeira, 1: 151-73, 1970.

GONZAGA, A. L. Madeira: uso e conservação. Brasília, DF: IPHAN/MONUMENTA, 2006. 246 p. (Cadernos Técnicos, 6).

JATI, S. R.; BARBOSA, R. I.; FEARNSIDE, P. M. Influência dos fatores edáficos e da altimetria na densidade da madeira do componente arbóreo-arbustivo de áreas de savana aberta de Roraima, Brasil. Revista Geografia Acadêmica, 13: 29-39, 2019.

KANG, S-M. et al. Creosote movement from treated wood immersed in fresh water. Forest Products Journal, 55: 42-46, 2005.

LEPAGE, E.; SALIS, A. G.; GUEDES, E. C. R. Tecnologia de proteção da madeira. São Paulo, SP: Montana Química, 2017, 225 p.

LOPES, D. J. V. et al. Influências do diâmetro e umidade da madeira na qualidade do tratamento preservativo. Floresta e Ambiente, 24: e20160207, 2017.

MEDEIROS, F. C. M. et al. Fungicidal activity of essential oils from Brazilian Cerrado species against wood decay fungi. International Biodeterioration and Biodegradation, 144: 87-93, 2016.

MELO, R. R. et al. Variação radial e longitudinal da densidade básica da madeira de Pinus elliottii Engelm. com diferentes idades. Ciência da Madeira, 4: 83-92, 2013.

NINKUU, V. et al. Biochemistry of terpenes and recent advances in plant protection. International Journal of Molecular Sciences, 22: 5710, 2021.

OLIVEIRA, H. N.; SANTANA, A. G.; ANTIGO, M. R. Atividade inseticida dos óleos de pinhão-manso (Jatropha curcas L.) e neem (Azadirachta indica A. Juss.) em ovos de Diatraea saccharalis (Fabr., 1794) (Lepidoptera: Crambidae). Arquivos do Instituto Biológico, 80: 229-232. 2013.

PAES, J. B. et al. Eficiência dos óleos de nim (Azadirachta indica) e de mamona (Ricinus communis) na melhoria da resistência da madeira de sumaúma (Ceiba pentandra) ao cupim Nasutitermes corniger em ensaio de preferência alimentar. Revista Árvore, 35: 751-758, 2011.

PAES, J. B. et al. Eficiência do óleo de candeia na melhoria da resistência da madeira de sumaúma a cupins. Cerne, 16: 217-225, 2010.

SOME, S. et al. Graphene-iodine nanocomposites: highly potent bacterial inhibitors that are bio-compatible with human cells. Scientific Reports, 6: 20015, 2016.

SONG, H. et al. Temperature-dependent water solubility of iodine-doped single-walled carbon nanotubes prepared using an electrochemical method. Physical Chemistry Chemical Physics, 15: 5767-5770, 2013.

SOUSA, S. F. et al. Efficiency of andiroba, copaiba and jatropha oils to improve the resistance of Pinus elliottii wood to wood-decay fungi. Revista Árvore, 44: e4430, 2020.

STEEL, R. G. D.; TORRIE, J. H.; DICKEY, D. A. Principles and procedures of statistic: a biometrical approach. 3rd. ed. New York: McGraw-Hill, 1996, 633 p.

TEIXEIRA, J. G. et al. Eficiência do óleo de neem e dos resíduos de candeia sobre a inibição do desenvolvimento de fungos xilófagos. Scientia Forestalis, 43: 417-426, 2015.

TOMAK, E. D. et al. The combined effects of boron and oil heat treatment on beech and Scots pine wood properties. Part 1: Boron leaching, thermogravimetric analysis, and chemical composition. Journal of Materials Science, 46: 598-607, 2011.

URASAKI, Y. et al. Fast-acting and receptor-mediated regulation of neuronal signaling pathways by copaiba essential oil. International Journal of Molecular Sciences, 21: 2259, 2020.

Downloads

Publicado

12-09-2024

Edição

Seção

Artigo Científico