VALIDATION OF SOIL USES AROUND RESERVOIRS IN THE SEMI-ARID THROUGH IMAGE CLASSIFICATION

Authors

  • Efraim Martins Araújo Geoprocessing Laboratory, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Iguatu, CE https://orcid.org/0000-0003-4847-0573
  • George Leite Mamede Institute of Engineering and Sustainable Development, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, CE https://orcid.org/0000-0002-5988-6948

DOI:

https://doi.org/10.1590/1983-21252021v34n319rc

Keywords:

Landsat 8. Hyperion. Kappa index.

Abstract

The work evaluated the potential for discrimination of land use and occupation around reservoirs, using spectral information obtained by multispectral, hyperspectral satellites and images obtained with an ARP (remotely piloted aircraft). The research analyzed the performance of different images classification techniques applied to multispectral and hyperspectral sensors for the detection and differentiation of soil classes around the Paus Brancos and Marengo reservoirs, located in Settlement 25 of Maio. The classes identified based on surveys in campaigns carried out in 2014 and 2015 around the reservoirs were: water, macrophytes, exposed soil, native vegetation, agriculture, thin and ebbing vegetation, in addition to the cloud and cloud shadow targets. The performance of the classifiers applied to the image of the Hyperion sensor was, in general, superior to those obtained in Landsat 8 image, which can be explained by the high spectral resolution of the first, which facilitates the differentiation of targets with similar spectral response. For validation of the supervised classification method of Maximum Likelihood, Landsat 8 (08/24/2015) and Hyperion (08/28/2015) images were used. The results of the application indicated a good performance of the classifier associated with the RGB composition of the chosen Hyperion image (bands R - 51, G - 161, B - 19) in the detection of the classes around this reservoir, producing a Kappa coefficient of 0.83. The availability of data from the Hyperion sensor is very restricted, which hinders the development of continued research, thus the use of images surpassed by RPA is extremely viable.

 

Downloads

Download data is not yet available.

References

BHARDWAJ, A. et al. A lake detection algorithm (LDA) using Landsat 8 data: A comparative approach in glacial environment. International Journal of Applied Earth Observation and Geoinformation, 38: 150-163, 2015.

BLANCO, P. D. et al. Ecological site classification of semiarid rangelands: Synergistic use of Landsat and Hyperion imagery. International Journal of Applied Earth Observation and Geoinformation, 29: 11-21, 2014.

COULTER, L. L. et al. Classification and assessment of land cover and land use change in southern ghana using dense stacks of landsat 7 etm+ imagery. Remote Sensing of Environment, 184: 396-409, 2016.

DUBE, T.; MUTANGA, O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 101: 36-46, 2015.

EROS - Earth Resources Observation and Science. Geological Survey. Disponível em: <https://www.usgs.gov/centers/eros/data-tools>. Acesso em: 14 jan. 2015.

GALVÃO, L. S; FORMAGGIO, A. R; TISOT, D. A. Discriminação de variedades de cana-de-açúcar com dados hiperespectrais do sensor Hyperion/EO-1, Revista Brasileira de Cartografia, 1: 7-14, 2005.

GEORGE, R.; PADALIA, H.; KUSHWAHA, S. P. S. Forest tree species discrimination in western Himalaya using EO-1 Hyperion. International Journal of Applied Earth Observation and Geoinformation, 28: 140-149, 2014.

GILBERTSON, J. K.; KEMP, J.; NIEKERK VAN, A. Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques. Computers and Electronics in Agriculture, 134: 151–159, 2017.

IBGE - Instituto Brasileiro de Geografia e Estatística. Mapas. Disponível em: <https://portaldemapas.ibge.gov.br/portal.php#homepage>. Acesso em: 23 fevereiro 2020.

IPECE - Instituto de Pesquisa e Estratégia Econômica do Ceará. Perfil básico municipal de Madalena. Fortaleza, 2009.

JAFARI, R.; LEWIS, M. M. Arid land characterisation with EO-1 Hyperion hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 19: 298–307, 2012.

LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for categorical data. Biometrics, 33: 159-174, 1977.

LIMA NETO, I. E.; WIEGAND, M. C.; ARAÚJO, J. C. Sediment redis-tribution due to a dense reservoir network in a large semi-arid brazilian basin. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 56: 319-333, 2011.

MAMEDE, G. L. et al. Overspill avalanching in a dense reservoir network. Proceedings of the National Academy of Sciences, 109: 7191-7195, 2012.

MOUNTRAKIS, G.; JUNGHOIM, C. O. Support vector machines in remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 66: 247-259, 2011.

MUTANGA, O.; ADAM, E.; CHO, M. A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18: 399-406, 2012.

PETROPOULOS, G. P.; ARVANITIS, K.; SIGRIMIS, N. Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping. Expert Systems with Applications, 39: 3800-3809, 2012.

RABE, A.; VAN DER LINDEN, S.; HOSTERT, P. (2014). imageSVM,Version 3.0, software de available. Disponível em: . Acesso em: 14 jan. 2016.

SAMSEEMOUNG, G. et al. Application of low altitude remote sensing (LARS) platform for monitoring crop growth and weed infestation in a soybean plantation. Precision Agriculture, 13: 611-627, 2012.

SCHRAMM, V. F.; VIBRANS, A. C. Uso de imagens hiperespectrais (EO-1 Hyperion) para detalhamento da detecção das formações florestais na bacia do Itajaí. Dynamis Revista Tecno-Cientifica, 13: 59-69, 2007.

TISOT, D. A.; FORMAGGIO, A. R.; RENNÓ, C. Eficácia de dados Hyperion/EO-1 para identificação de alvos agrícolas: Comparação com dados ETM+/LANDSAT-7. Engenharia Agrícola, 27: 511-519, 2007.

USGS - United States Geological Survey Usa. EarthExplorer. Disponível em: <http://landsat.usgs.gov/Landsat8_Using_Product.php>. Acesso em: 12 set. 2013.

VAN DER LINDEN, S. et al. Image SVM Classification, Manual for Application: imageSVM version 3.0, Humboldt-Universität zu Berlin, Germany, 2014.

XIE, Y. S.; WANG, J.-N.; SHANG, K. An improved approach based on Moment Matching to Destriping for Hyperion data. Procedia Environmental Sciences, 10: 319-324, 2011.

WHITE, J. C. et al. Characterizing temperate forest structural and spectral diversity with Hyperion EO-1 data. Remote Sensing of Environment, 114: 1576-589, 2010.

Downloads

Published

19-07-2021

Issue

Section

Agricultural Engineering