Physicochemical quality and bioactive compounds in orange-fleshed sweet potato
DOI:
https://doi.org/10.1590/1983-21252025v3812724rcKeywords:
Ipomoea batatas. Biofortification. Antioxidant. Tuberous roots.Abstract
Sweet potato is a vital food root, rich in vitamins, minerals, and bioactive compounds. Genotypes that meet these nutritional demands are essential to combat nutrient deficiencies and promote human health. Thus, it presupposes the hypothesis that sweet potato genotypes differ in physicochemical quality and bioactive compounds when evaluated under the same environmental conditions. Thus, this study aims to evaluate the physicochemical quality and bioactive compounds in genotypes of orange-fleshed sweet potato. The experiment was conducted from April 2022 to August 2022 in the experimental area of Agronomic Engineering, located at the Academic Unit Specialized in Agricultural Sciences (UAECA) - UFRN, in Macaíba, RN, Brazil. The treatments were composed of eight genotypes, being two cultivars (BRS Amélia and Beauregard) and six accessions (Macaíba I, Macaíba II, Macaíba III, Macaíba IV, Ceará-Mirim, and Natal I) of orange-fleshed sweet potato from the UAECA teaching collection. After harvest, the following characteristics were evaluated: firmness, elasticity, hydrogen potential (pH), titratable acidity (TA), soluble solids (SS), ratio (SS/TA), Vitamin C, and the bioactive compounds: anthocyanins, flavonoids, and total carotenoids. The orange-fleshed sweet potato genotypes showed distinct characteristics for the physicochemical variables and the bioactive compounds. Due to increased pulp pH, anthocyanins were reduced in the Ceará-Mirim, Macaíba III, and Macaíba IV genotypes. The Macaíba II and Natal I genotypes stood out regarding the SS/TA ratio, flavonoids, and anthocyanins. In contrast, the Macaíba III genotype had the highest carotenoid content and great bioactive potential.
Downloads
References
ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22: 711-728, 2013.
AOAC - Association of Official Analytical Chemistry. Official methods of analysis of the Association of Official Analytical Chemistry. 17. ed. Washington: AOAC, 2002. 1115 p.
BALIĆ, A.; MOKOS, M. Do we utilize our knowledge of the skin protective effects of carotenoids enough?. Antioxidants, 8: 1-19, 2019.
BENNETT, A. A. et al. Untargeted metabolomics of purple and orange-fleshed sweet potatoes reveals a large structural diversity of anthocyanins and flavonoids. Scientific Reports, 11: 1-13, 2021.
BENTO, K. J. Use of orange fleshed sweet potato [Ipomoea batatas (L) Lam] to combat vitamin A deficiency. International Journal of Plant Breeding and Crop Science, 8: 1033-1038, 2021.
CANO, C. B. et al. Conservas vegetais, frutas e produtos de frutas. In: ZENEBON, O.; PASCUET, N. S.; TIGLEA, P. (Eds.). Métodos físico-químicos para análise de alimentos. 4. ed. São Paulo, SP: Instituto Adolfo Lutz, 2008. cap. 15, p. 567-587.
CARTABIANO-LEITE, C. E.; PORCU, O. M.; CASAS, A. F. Sweet potato (Ipomoea batatas L. Lam) nutritional potential and social relevance: a review. History, 11: 23-40, 2020.
CHEN, C. C. et al. Stability and Quality of Anthocyanin in Purple Sweet Potato Extracts. Foods, 2019, 8: 1-13, 2019.
ELLONG, E. N.; BILLARD, C.; ADENET, S. Comparison of physicochemical, organoleptic and nutritional abilities of eight sweet potato (Ipomoea batatas) varieties. Food and Nutrition Sciences, 5: 1-6, 2014.
FRANCIS, F. J. Analysis of anthocyanins. In: MARKAKIS, P. Anthocyanins as food colors. London, UK: Academic Press, 1982. cap. 7, p. 182-204.
FROND, A. D. et al. Phytochemical characterization of five edible purple-reddish vegetables: Anthocyanins, flavonoids, and phenolic acid derivatives. Molecules, 24: 1536, 2019.
HIGBY, W. K. A. A simplified method for determination of some the carotenoid distribuition in natural and carotene-fortified orange juice. Journal of Food Science, 27: 42-49, 1962.
INMET - Instituto Nacional de Meteorologia. Dados meteorológicos. 2022. Available at: https://mapas.inmet.gov.br/#. Access on: Jan. 15, 2024.
ISLAM, S. N. et al. Carotenoids and β-carotene in orange fleshed sweet potato: A possible solution to vitamin A deficiency. Food Chemistry, 199: 628-631, 2016.
KROCHMAL-MARCZAK, B. et al. Comparative assessment of phenolic content, cellular antioxidant, antityrosinase and protective activities on skin cells of extracts from three sweet potato (Ipomoea batatas (L.) Lam.) cultivars. Journal of King Saud University-Science, 33: 101532, 2021.
LEAL, M. H. S. et al. Selection of new sweet potato genotypes based on production parameters, physical root characteristics and resistance to Euscepes postfasciatus. Journal of Crop Science and Biotechnology, 24: 349-360, 2021.
OFORI, K. F. et al. Improving nutrition through biofortification–A systematic review. Frontiers in Nutrition, 9: 1-20, 2022.
OLIVEIRA, P. H. A. et al. Production and physical quality of sweet potatoes under phosphate fertilization. Revista Caatinga, 37: e11399, 2024a.
OLIVEIRA, P. H. A. et al. Chemical quality and bioactive compounds of sweet potatoes under phosphate fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 28: e274451, 2024b.
PARK, S. C. et al. Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar. Plant Physiology and Biochemistry, 86: 82-90, 2015.
PATERNINA, G. A.; LUNA, F. V.; BERMUDEZ, A. A. Nutraceutical, thermophysical and textural characteristics of papaya (Carica papaya L.) and incidence for post-harvest management. Heliyon, 8: 1-7, 2022.
PILON, L. et al. Quality characterization, phenolic and carotenoid content of new orange, cream and yellow-fleshed sweetpotato genotypes. Horticultura Brasileira, 39: 299-304, 2021.
RAJU, S. Strategies for enhancing post-harvest quality and shelf life of tuber crops: Insights from physiological perspectives. Journal of Root Crops, 47: 40-52, 2021.
REN, L. et al. Exploring the metabolic changes in sweet potato during postharvest storage using a widely targeted metabolomics approach. Journal of Food Processing and Preservation, 45: e15118, 2021.
SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. 5.ed., revisada e ampliada. Brasília, DF: Embrapa, 2018. 356 p.
STROHECKER, R.; HENNING, H. M. Analisis de vitaminas: métodos comprobados. Paz Montalvo: Madrid, 1967. 428 p.
UCHÔA, V. T. et al. Caracterização físico-química de batata-doce (Ipomoea batatas) comum e biofortificada. Revista Ciência Agrícola, 13: 53-60, 2016.
VARGAS, P. F. et al. Genetic diversity among sweet potato crops cultivated by traditional farmers. Revista Caatinga, 31: 779-790, 2018.
VIZZOTTO, M. et al. Physicochemical and antioxidant capacity analysis of colored sweet potato genotypes: in natura and thermally processed. Ciência Rural, 47: e20151385, 2017.
ZEIST, A. R. et al. Selecting orange-fleshed sweet potato genotypes using selection indices. Horticultura Brasileira, 40: 231-237, 2022.
Downloads
Published
Issue
Section
License
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).