Conventional morphological descriptors and artificial neural networks for characterizing biofortified lettuce germplasm

Authors

  • Ana Carolina Pires Jacinto Institute of Agricultural Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil https://orcid.org/0000-0001-8184-5803
  • Renata Castoldi Institute of Agricultural Sciences, Universidade Federal de Uberlândia, Monte Carmelo, MG, Brazil https://orcid.org/0000-0001-9406-0917
  • Isadora Gonçalves da Silva Department of Agriculture, Universidade Federal de Lavras, Lavras, MG, Brazil https://orcid.org/0000-0001-8493-1280
  • Diesiele Caroline Silveira Mota Institute of Agricultural Sciences, Universidade Federal de Uberlândia, Monte Carmelo, MG, Brazil https://orcid.org/0000-0002-3364-7658
  • Leticia Gonçalves Moreira Institute of Agricultural Sciences, Universidade Federal de Uberlândia, Monte Carmelo, MG, Brazil https://orcid.org/0000-0002-4895-4749
  • Gabriel Mascarenhas Maciel Institute of Agricultural Sciences, Universidade Federal de Uberlândia, Monte Carmelo, MG, Brazil https://orcid.org/0000-0002-3004-9134
  • Camila Soares de Oliveira Institute of Agricultural Sciences, Universidade Federal de Uberlândia, Monte Carmelo, MG, Brazil https://orcid.org/0000-0002-4251-1461
  • Hamilton César de Oliveira Charlo Department of Agronomy, Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Uberaba, MG, Brazil https://orcid.org/0000-0003-0663-2167

DOI:

https://doi.org/10.1590/1983-21252024v3712466rc

Keywords:

Artificial intelligence. Plant breeding. Vegetables.

Abstract

The classification based on morphological descriptors in lettuce is considered a complex activity and proves to be efficient for studying phenotypic characteristics. Therefore, the objective of this study was to analyze the biofortified lettuce germplasm bank at the Universidade Federal de Uberlândia using both conventional morphological descriptors and artificial neural networks. The experiment was conducted in the field. The experimental design employed was a randomized complete block design, consisting of 14 treatments (11 genotypes of mini lettuce, and the cultivars Purpurita, UDI 10.000, and Pira 72) with four replications. Nine morphological descriptors were evaluated. Following the data acquisition, dissimilarity matrix analyses, principal component analysis, dendrogram construction, and artificial neural network (ANN) analyses were performed. The genotypes exhibited phenotypic variability when compared to the parental strains UDI 10.000 and Pira 72. The purple color of the leaves and anthocyanin presence across the entire leaf surface were predominant among the genotypes. Descriptors such as leaf intensity and color, as well as anthocyanin intensity, coloration, and distribution, were the most influential in assessing genetic variability. The Self-Organizing Map (SOM) demonstrated greater sensitivity in discriminating between genotypes compared to the Unweighted Pair Group Method with Arithmetic Mean (UPGMA). While the UPGMA clustering method grouped genotypes into three clusters, the SOM method grouped into five clusters. The use of genetic distance analyses and SOM dendrogram proved to be effective in selecting individuals UFU 215#1, UFU 215#2, UFU 215#6, UFU 215#10, and UFU 215#13, which are clustered with the cultivar UFU Mini Biofort.

Downloads

Download data is not yet available.

References

ALI-SHTAYEH, M. S. et al. Morphological characterization of snake melon (Cucumis melo var. flexuosus) populations from Palestine. Genetic Resources and Crop Evolution, 64: 7-22, 2017.

BECK, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Scientific Data, 1: 1-12, 2018.

BENDOKAS, V. et al. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Critical Reviews in Food Science and Nutrition, 60: 1-14, 2019.

BOHÓRQUEZ, A. C. C. et al. Seleção de cultivares de alface para produção na mesorregião do Alto Solimões - AM. Cultura Agronômica, 26: 115-122, 2017.

BURLE, M. L.; OLIVEIRA, M. S. P. Manual de curadores de germoplasma - vegetal: caracterização morfológica. Brasília, DF: Embrapa Recursos Genéticos e Biotecnologia, 2010. 15 p.

CARDOSO, D. B. O. et al. Colored fiber cotton in the Uberlândia region using artificial neural networks for yield assessment. Genetics and Molecular Research, 18: 1-13, 2019.

CARDOSO, D. B. O. et al. Use of computational intelligence in the genetic divergence of colored cotton plants. Bioscience Journal, 37: 1-9, 2021.

CARVALHO et al. Anuário Brasileiro de Horti & Fruti 2020. 2019. Disponível em: <http://www.editoragazeta.com.br/sitewp/wp-content/uploads/2020/0

/HORTIFRUTI_2020.pdf>. Acesso em: 10 fev. 2023.

COVRE, E. A. et al. Physical-chemical and sensory characteristics of Brunela lettuce. Revista Agrarian, 13: 265-272, 2020.

CRUZ, C. D.; CARNEIRO, P. C. S. Modelos biométricos aplicados ao melhoramento genético. 3. ed. Viçosa, MG: UFV, 2014. 585 p.

CRUZ, C. D.; NASCIMENTO, M. Inteligência computacional aplicada ao melhoramento genético. Viçosa, MG: UFV, 2018.414 p.

DIAS, P. P. et al. Atividade fungitóxica in vitro do óleo essencial de capim limão (Cymbopogon citratus (D.C.) Stapf) e controle de Rhizoctonia solani em plantas de alface (Lactuca sativa L.), cultivar maravilha quatro estações. Summa Phytopathologica, 47: 204-208, 2021.

ESPÍRITO SANTO, L. M.; MENEZES, B. R.; CARMO, M. G. F. Genetic variability in Capsicum spp. accessions through multicategorical traits. Revista Ceres, 69: 195-202, 2022.

EVANGELISTA, R. L. C. A. et al. Caracterização morfológica de 21 genótipos de batata-doce. Revista AgroFIB, 2: 55-66, 2022.

FARAHANI, M. et al. Phenotypic diversity among Morus alba var. nigra genotypes as revealed by multivariate analysis. Scientia Horticulturae, 248: 41-49, 2019.

FONTES, P. C. R. Alface. In: RIBEIRO, A. C.; GUIMARÃES, P. T. G.; ALVAREZ, V. H. A. (Eds.). Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5° Aproximação. Viçosa, MG: Editora UFV, 1999. v. 1, cap. 18, p. 177.

KIM, D. E. et al. Metabolite profiling of green, green/red, and red lettuce cultivars: Variation in health beneficial compounds and antioxidant potential. Food Research International, 105: 361-370, 2018.

KLOOSTER, W. S. et al. Growth and physiology of deciduous shade trees in response to controlle drelease fertilizer. Scientia Horticulturae, 135: 71-79, 2012.

KORIR, N. K. et al. Plant variety and cultivar identification: advances and prospects. Critical Reviews in Biotechnology, 33: 1-15. 2012.

MAPA - Ministério da Agricultura Pecuária e Abastecimento. Instruções para execução dos ensaios de Distinguibilidade, Homogeneidade e Estabilidade de cultivares de alface (Lactuca sativa L.). 2001. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios

/insumos-agricolas/protecao-de-cultivar/olericolas. Acesso em: 15 fev. 2023.

MOJENA, R. Hierarchical grouping methods and stopping rules: an evaluation. The Computer Journal, 20: 359-363, 1977.

MOU, B. Mutations in lettuce improvement. International Journal of Plants Genomics, 2011: 1-7, 2011.

OLIVEIRA, C. S. et al. Artificial neural networks and genetic dissimilarity among saladette type dwarf tomato plant populations. Food Chemistry: Molecular Sciences, 3: 1-9, 2021.

R CORE TEAM. R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing, 2022. Disponível em: <https://www.r-project.org/>. Acesso em: 15 fev. 2023.

SALA, F. C.; COSTA, C. P. Retrospectiva e tendência da alfacicultura brasileira. Horticultura Brasileira, 30: 187-194, 2012.

SANTOS, C. P. et al. Morphological evaluation of lettuce genotypes grown under hydroponic system. Horticultura Brasileira, 39: 312-318, 2021.

SANTOS, I. G. et al. Self-organizing maps in the study of genetic diversity among irrigated rice genotypes. Acta Scientiarum Agronomy, 41: 1-9, 2019.

SILVA, E. H. C. et al. Morphoagronomic characterization and genetic diversity of a Brazilian okra [Abelmoschus esculentus (L.) Moench] panel. Genetic Resources and Crop Evolution, 68: 371-380, 2021.

SOUSA, L. A. et al. Agronomic potential of biofortified crisphead lettuce (Lactuca sativa) and its reaction to rootknot nematode. Australian Journal of Crop Science, 13: 773-779, 2019.

SOUZA, J. L. et al. Loose-Leaf Lettuce genotypes for the Agreste region in Sergipe, Brazil. Revista Verde, 14: 629-634, 2019.

Downloads

Published

19-07-2024

Issue

Section

Scientific Article