Growth of oilseed flax described by nonlinear logistic model
DOI:
https://doi.org/10.1590/1983-21252024v3712147rcKeywords:
Linum usitatissimum L. Edaphoclimatic conditions. Morphology. Growth curve.Abstract
Knowledge on plant-atmosphere interactions is essential to understand the growth and development of agricultural crops. Thus, fitting growth curves is an important methodology to model plant growth and phenological stages. The study aimed to describe the growth of four oilseed flax materials cultivated in six agricultural years and with different sowing dates through the nonlinear logistic model. Nine experiments were carried out in Curitibanos, SC, Brazil, between 2014 and 2020, considering different sowing dates. Throughout the crop cycle, the number of leaves, number of secondary stems, plant height and total dry mass were measured. Nonlinear logistic model was fitted to the data, with the growth variables as the dependent variables and the accumulated thermal sum as the independent variable. Model fit and parameter estimation were obtained by ordinary least method, using a Gauss-Newton algorithm. The goodness of fit was measured by intrinsic and parametric nonlinearity, adjusted coefficient of determination, random standard error, standard deviation of fit, Akaike information criterion, and Bayesian information criterion. The performance of the nonlinear logistic model differed between the varieties and cultivars studied, in different years and sowing times. However, the use of the nonlinear logistic model improves inferences about the growth of oilseed flax, and the estimates of its parameters and critical points allow a biological and practical interpretation to assist in crop planning. Furthermore, the study suggests that the oilseed flax cycle is directly related to genotype × environment interactions, and when sown at later times, the materials tend to shorten their cycle.
Downloads
References
AHMAD, R. et al. Genetic variability, heritability and genetic advance in some genotypes of linseed Linum usitatissimum L. Journal of Agricultural Research, 52: 43-52, 2014.
AKPO, E. et al. Growth dynamics of tree nursery seedlings: The case of oil palm. Scientia Horticulturae, 175: 251-257, 2014.
ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22: 711-728, 2013.
BARROSO, A. K. M. et al. Linhaça marrom e dourada: propriedades químicas e funcionais das sementes e dos óleos prensados a frio. Ciência Rural, 44: 181-187, 2014.
BATES, M. D.; WATTS, D. G. Nonlinear Regression Analysis and Its Applications. New York: John Wiley & Sons, 1988. 365 p.
BERT, F. Lin fibre - Culture et transformation. ARVALIS - Institut du végétal, 2013. 88 p.
BOSCO, L. C. et al. Relação das condições meteorológicas com produtividade e fenologia da linhaça em agroecossistemas do Sul do Brasil. Brazilian Journal of Development, 6: 24838-24868, 2020.
CARGNELUTTI FILHO, A. et al. Relações lineares entre caracteres de linho. Bragantia, 75: 257-262, 2016.
CARINI, F. et al. Nonlinear models for describing lettuce growth in autumn-winter. Ciência Rural, 50: 1-12, 2020.
CARSON, L. C. et al. Nitrogen Release Properties of Controlled-release Fertilizers during Tomato Production. HortScience, 49: 1568-1574, 2014.
CARVALHO, I. R. et al. Avanços tecnológicos da linhaça. Curitiba, PR: CRV, 2023. 312 p.
DIEL, M. I. et al. Nonlinear regression for description of strawberry (Fragaria x ananassa) production. The Journal of Horticultural Science and Biotechnology, 94: 259-273, 2019.
DIEL, M. I. et al. Production of biquinho pepper in different growing seasons characterized by the logistic model and its critical points. Ciencia Rural, 50: 1-11, 2020.
FLAX COUNCIL OF CANADA. Growing Flax Profitably (Quick Tips Guide). Canada: Manitoba FlaxGrowers Association, 2022. 37 p.
HALL, L. M. et al. Flax (Linum usitatissimum L.). In: MCKEON, T. A. et al. (Eds.) Industrial Oil Crops. AOCS Press: Elsevier, chap. 6, p. 157-194, 2016.
JANE, S. A. et al. Adjusting the growth curve of sugarcane varieties using nonlinear models. Ciência Rural, 50: e20190408, 2020.
LEITE, M. L. M. V. et al. Estimativa da área foliar em Urochloa mosambicensis por dimensões lineares. Agropecuária Técnica, 38: 9-17, 2017.
MISCHAN, M. M.; PINHO, S. Z.; CARVALHO, L. R. Determination of a point sufficiently close to the asymptote in nonlinear growth functions. Scientia Agricola, 68: 109-114, 2011.
NADIMI, M.; LOEWEN, G.; PALIWAL, J. Assessment of mechanical damage to flaxseeds using radiographic imaging and tomography. Smart Agricultural Technology, 2: 100057, 2022.
PERIPOLLI, M. et al. Nonlinear regression models for estimating linseed growth, with proposals for data collection. Acta Scientiarum Agronomy, 46: e65771, 2024.
R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna: R Foundation for Statistical Computing. 2022.
ROSSETTO, C. et al. Diferentes doses de Potássio na cultura da linhaça (Linum Usitatissimum L.). Acta Iguazu, 1: 98-105, 2012.
SANTOS, R. F. et al. Nitrogênio no cultivo da linhaça dourada (Linus usitatissimum L.). Acta Iguazu, 2: 73-83, 2013.
SARI, B. et al. Nonlinear growth models: An alternative to ANOVA in tomato trials evaluation. European Journal of Agronomy, 104: 21-36, 2019.
SILVA, É. M. et al. Evaluation of the critical points of the most adequate nonlinear model in adjusting growth data of ‘green dwarf’ coconut fruits. Revista Brasileira de Fruticultura, 43: 1-11, 2021.
SOUZA, F. A. C. et al. Nonlinear modeling growth body weight of Mangalarga Marchador horses. Ciência Rural, 47: e20160636, 2017.
STANCK, L. T.; BECKER, D.; BOSCO, L. C. Crescimento e produtividade de linhaça. Agrometeoros, 25: 249-256, 2017.
TORRES, F. E. et al. Número de repetições para avaliação de caracteres em genótipos de feijão-caupi. Bragantia, 74: 161-168, 2015.
YAN, L.; CHOUW, N.; JAUARAMAN, K. Flax fibre and its composites - A review. Composites Part B. Engineering, 56: 296-317, 2014.
YOKOO, M. J. I. et al. Medidas repetidas no estudo de características de crescimento e carcaça avaliadas por ultrassom em novilhas de corte cruzadas. Boletim de Indústria Animal, 71: 200-210, 2014.
Downloads
Published
Issue
Section
License
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).