Relationship between spectral indices and quality parameters of tifton 85 forage
DOI:
https://doi.org/10.1590/1983-21252024v3712139rcKeywords:
Cynodon spp. Pastures. Computer vision. Digital images.Abstract
Computer vision systems can be an alternative to traditional methods of analyzing the quality of forage crops, allowing the instantaneous, non-destructive monitoring of the crop, with cost reduction. This study aimed to evaluate the quality parameters of Tifton 85 (Cynodon spp.) using digital images, relating spectral indices to the quality parameters of this forage. In the experimental area, four levels of nitrogen fertilization were applied and the analyses were made at different times after the standardization cut (14, 28, 42, and 56 days). The quality parameters evaluated were mineral matter, crude protein, and neutral detergent fiber. From images obtained in the visible (RGB) and near-infrared (RGNIR) spectral regions, spectral indices were generated. Principal component analysis was applied to summarize the information obtained by spectral indices into a single principal component (PC1). PC1 associated with spectral indices was related to forage quality parameters for each cutting time using simple quadratic regression models. The relationships between mineral matter and spectral indices were variable over time. Crude protein and neutral detergent fiber showed the highest relationships with the spectral indices obtained by RGNIR images already at the initial times. Thus, although the RGB images have shown satisfactory results to obtain information about the quality of Tifton 85, the NIR band tends to increase the reliability of the relationships at early times.
Downloads
References
AHMAD, N. et al. The effects of technological innovation on sustainable development and environmental degradation: Evidence from China. Technology in Society, 72: 102184, 2023.
ANDRADE, W. R. et al. Hay Tifton-85 grass under nitrogen doses in different days of regrowth. Acta Scientiarum Animal Sciences, 40: 37692, 2018.
DELONGUI, R.; COALHO, M. R. Avaliação das características morfogênicas sobre a produção e composição bromatológica do Capim-Tifton 85 submetido a diferentes doses de nitrogênio. Revista Terra & Cultura: Cadernos de Ensino e Pesquisa, 34: 64 -73, 2018.
DETMANN, E. et al. Métodos para análise de alimentos. 1. ed. Visconde do Rio Branco, MG: Suprema, 2012. 214 p.
EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Monitoramento tecnológico de cultivares de forragens no Brasil. São Carlos, SP: Embrapa Pecuária Sudeste, 2021. 34 p. (Documentos, 139.)
FAO - Food and Agriculture Organization of the United Nations. Alimentos e Agricultura no mundo: Anuário Estatístico. Roma: FAO, 2022. 382 p.
FORMAGGIO, A. R.; SANCHES, L. D. Sensoriamento remoto em agricultura. 1. ed. São Paulo, SP: Oficina do texto, 2017. 288 p.
HAMMER, O.; HARPER, D. A. T.; RYAN, P. D. PAST - Paleontological Statistics software package for education and data analysis. Palaentologia Eletrônica, 4: 1-9, 2001.
HUACCHA-CASTILLO, A. E. et al. Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L.(Rubiaceae) based on linear models. Forest Science and Technology, 19: 59-67, 2023.
KŘÍŽOVÁ, K. et al. Using a single-board computer as a low-cost instrument for SPAD value estimation through colour images and chlorophyll-related spectral indices. Ecological Informatics, 67: 101496, 2022.
KÖPPEN, W. Climatologia: con un estudio de los climas de la tierra. Fondo de Cultura Econômica. 1948, 479 p.
MAIMAITIJIANG, M. et al. Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 151: 27-41, 2019.
MANCIN, W. R. et al. The use of computer vision to classify Xaraés grass according to nutritional status in nitrogen. Revista Ciência Agronômica, 53: 20207797, 2022.
NILSSON, M. S. et al. Effect of different nitrogen fertilization rates on the spectral response of Brachiaria brizantha cv. Marandú leaves. Engenharia Agrícola, 43: e20220008, 2023.
PATZLAFF, N. L. et al. A importância do uso da dose correta na adubação nitrogenada de tifton 85. Revista Científica Rural, 22: 1-12, 2020.
PETERS, K. C. et al. Field-scale calibration of the PAR Ceptometer and FieldScout CM for real-time estimation of herbage mass and nutritive value of rotationally grazed tropical pasture. Smart Agricultural Technology, 2: 100037, 2022.
SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília, DF: Embrapa, 2018. 356 p.
SCHAEFFER, G. H. et al. Avaliação do desenvolvimento de grama tifton 85 submetida a diferentes doses e fontes de nitrogênio. Anuário Pesquisa e Extensão Unoesc São Miguel do Oeste, 6: 27735, 2021.
SENA JÚNIOR, D. G. et al. Discriminação entre estágios nutricionais na cultura do trigo com técnicas de visão artificial e medidor portátil de clorofila. Revista de Engenharia Agrícola, 28: 187-195, 2008.
SERRET, M. D. et al. Vegetation indices derived from digital images and stable carbon and nitrogen isotope signatures as indicators of date palm performance under salinity. Agricultural Water Management, 230: 105949, 2020.
SILVA, C. J. A. et al. How lamb production systems can affect the characteristics and sward structure of Tifton 85 pasture?. Small Ruminant Research, 188: 106124, 2020.
SOMAVILLA, A. et al. Chemical pattern of vegetation and topsoil of rangeland fertilized over 21 years with phosphorus sources and limestone. Soil and Tillage Research, 205: 104759, 2021.
SUNOJ, S. et al. Digital image analysis estimates of biomass, carbon, and nitrogen uptake of winter cereal cover crops. Computers and Electronics in Agriculture, 184: 106093, 2021.
SOUZA, C. D. et al. Natural Genetic Diversity of Nutritive Value Traits in the Genus Cynodon. Agronomy, 10: 1729, 2020.
TONG, X. et al. Combined use of in situ hyperspectral vegetation indices for estimating pasture biomass at peak productive period for harvest decision. Precision Agriculture, 20: 477-495, 2019.
WANG, H. et al. Regulation of Density and Fertilization on Crude Protein Synthesis in Forage Maize in a Semiarid Rain-Fed Area. Agriculture, 13: 715, 2023.
Downloads
Published
Issue
Section
License
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).