Does hydrogel help in the mitigation and recovery of Eugenia myrcianthes Nied. under water stress?

Authors

DOI:

https://doi.org/10.1590/1983-21252024v3712000rc

Keywords:

Flooding. Pessegueiro-do-mato. Resilience. Water deficit. Water-retaining polymer.

Abstract

Water deficit or flooding can damage the photosynthetic and enzymatic metabolism in plants such as Eugenia myrcianthes Nied. Thus, knowledge of technologies that can mitigate stress damage is necessary for the ex-situ cultivation of these species. This study evaluates the potential of hydrogel (H) to mitigate water stress and assist in the recovery of E. myrcianthes seedlings under different water conditions. The seedlings were separated into three water regimes: R1 - continuous irrigation (control); R2 - intermittent stress, characterized by two stress cycles: water restriction followed by flooding (stress); and R3 - intermittent stress + hydrogel - Forth® gel (stress + H). Evaluations occurred in six periods: zero time (T0), 1st zero photosynthesis (P0), 1st recovery (REC), 2nd P0, 2nd REC, and END. E. myrcianthes seedlings responded to water conditions with reduced CO2 assimilation rate, transpiration, and stomatal conductance during stressful conditions. We observed decrease in the growth parameters of this species under stress, including leaf area and biomass. Under stress, independent of H, plants increased the activity of the enzymes superoxide dismutase, peroxidase, and the content of the amino acid proline. We observed recovery potential in most of the evaluated traits. E. myrcianthes seedlings showed morphophysiological changes due to water deficit and flooding. Still, hydrogel did not contribute to alleviating the effects of water deficit on gas exchange and did not affect flooding. Seedlings showed survival and resumption of metabolism and growth after stressful conditions. This demonstrates their resilience due to physiological plasticity, regardless of the use of hydrogel.

Downloads

Download data is not yet available.

References

ASLAM, S.; ASLAM, S. Impact of flooding on agricultural crops an overview. Environmental Processes and Management, 120: 255-263, 2023.

BARBOSA, M. R. et al. Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. Ciência Rural, 44: 453-460, 2014.

BATES, L. S.; WALDREN, R. P; TEARE, I. D. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207, 1973.

BELTRAMIN, F. A. et al. Water-retaining polymer mitigates the water deficit in Schinus terebinthifolia: photosynthetic metabolism and initial growth. Engenharia Agrícola, 40: 684-691, 2020.

BISPO, T. M.; VIEIRA, A. V. Assimilatory deficit and energy regulation in young Handroanthus chrysotrichus plants under flooding stress. Journal of Plant Research, 135: 323-336, 2022.

BOGATI, K.; WALCZAK, M. The impact of drought stress on soil microbial community, enzyme activies and plants. Agronomy, 12: 189, 2022.

BROETTO, F. Métodos de trabalho em bioquímica vegetal e tecnologia de enzimas. [Recurso Eletrônico] / Coordenador: Fernando Broetto – Botucatu: IBB, Cultura. São Paulo, SP: Acadêmica, UNESP, 2014. 92 p.

CORDOBA-NOVOA, H. A. et al. Shading reduces water deficit in strawberry (Fragaria x Ananassa) plants during vegetative growth. International Journal of fruit Science, 22: 725-740, 2022.

FERREIRA, E. A. et al. Eficiência do hidrogel e respostas fisiológicas de mudas de cultivares apirênicas de citros sob déficit hídrico. Pesquisa Agropecuária Tropical, 44: 158-165, 2014.

FEYZIYEV, Y. M. Chlorophyll fluorescence and “Maximum Quantum Efficiency” of photosystem II in plant sciences. Life Sciences and Biomedicine, 1: 18-28, 2019.

FONSECA, L. et al. Viabilidade do hidrogel na recuperação de cerrado sensu stricto com espécies nativas. Floresta e Ambiente, 24: e20160227, 2017.

GARCÍA-CAPARRÓS, P. et al. Oxidative stress and antioxidante metabolism under adverse environmental conditions: a review. The Botanical Review, 87: 421-466, 2021.

GUARINO, E. S. G. et al. Espécies de plantas prioritárias para projetos de restauração ecológica em diferentes formações vegetais no bioma pampa: primeira aproximação. Pelotas, RS: EMBRAPA CLIMA TEMPERADO, 2018. 79 p. (Documentos, 457).

INFANTE, J. et al. Antioxidant and anti-inflammatory activities of unexplored brazilian native fruits. Plos One, 11: 1-13, 2016.

KUMAR, R. et al. Hydrogel and its effect on soil moisture status and plant growth: A review. Journal of Pharmacognosy and Phytochemistry, 9: 1746-1753, 2020.

LANGNER, J. A. et al. Water-deficit tolerance of landrace and improved corn genotypes. Pesquisa Agropecuária Brasileira, 56: e02627, 2021.

MEDEIROS, R. L. S. et al. How does water deficit induce changes in primary and secondary metabolism in Corymbia citriodora seedlings? Scientia Forestalis, 51: e3911, 2023.

MISHRA, N. et al. Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Frontiers in Plant Science, 14: 1110622, 2023.

OLIVEIRA, A. K. M.; GUALTIERE, S. C. J. Trocas gasosas e grau de tolerância ao estresse hídrico induzido em plantas jovens de Tabebuia aurea (paratudo) submetidas a alagamento. Ciência Florestal, 27: 181-191, 2017.

REHMAN, R. S. et al. Abscisic acid mediated abiotic stress tolerance in plants. Asian Journal of Research in Crop Science, 7: 1-17, 2022.

SANTOS, S. R.; MARCHIORI, J. N. C.; SIEGLOCH, A. M. Diversidade estrutural em Eugenia L. (Myrtaceae). Ciência Florestal, 24: 785-792, 2014.

SHARMA, S. et al. Ultrastructure, adaptability, and alleviation mechanisms of photosynthetic apparatus in plants under waterlogging: a review. Photosynthetica, 60: 430-444, 2022.

SILVA, A. B. et al. Levantamento da biodiversidade de arbóreas em fragmento florestal na região sul de Minas Gerais. Revista Agrogeoambiental, 8: 47-60, 2016.

SILVA, M. S. et al. Do hydro-retainer polymers attenuate damage from water fluctuations in leaf metabolism and the quality of Cedrela odorata seedlings? International Journal of Agriculture & Biology, 26: 209-216, 2021.

SINGH, N. et al. 3-dimensional cross limked hydrophilic polymeric network “hydrogels”: na agriculture boom. Agricultural Water Management, 253: 106939, 2021.

SONG-PING, L. et al. Effects of seasonal variation on soil microbial community structure and enzyme activity in a masson pine forest in Southwest China. Journal of Montain Science, 17: 1398-1409, 2020.

SOUZA, C. C. et al. Avaliação de métodos de determinação de água disponível e manejo da irrigação em terra roxa sob cultivo de algodoeiro herbáceo. Revista Brasileira de Engenharia Agrícola e Ambiental, 4: 338-342, 2000.

TURNER, N. C. Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58: 339-366, 1981.

WAHAB, A. et al. Plants physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review. Plants, 11: 1620, 2022.

YANG, X. et al. Response mechanism of plants to drought stress. Horticulturae, 7: 1-36, 2021.

Downloads

Published

12-04-2024

Issue

Section

Scientific Article