Try574 leu mutation confers cross-resistance to ALS-inhibiting herbicides in wild radish

Authors

DOI:

https://doi.org/10.1590/1983-21252024v3711974rc

Keywords:

Single-nucleotide polymorphism. Raphanus raphanistrum. Wheat. Weed Control.

Abstract

Understanding how weeds resist herbicides, their resistance mechanisms, and alternative control methods are crucial for managing herbicide-resistant weeds. This study aims to unravel the resistance mechanism of a Raphanus raphanistrum biotype to acetolactate synthase (ALS) inhibitors. To this end, dose-response studies, DNA sequencing, and metabolic pathway verification were conducted. ALS-inhibiting herbicides showed low efficacy in controlling this biotype, confirming cross-resistance. Sequencing of the ALS enzyme revealed the presence of the previously reported Try-574-Leu mutation, known to confer cross-resistance to this mode of action. However, the metabolization verification assay demonstrated that this mechanism did not contribute to the observed resistance. Chemical control studies with alternative herbicides yielded promising results, indicating the potential for effective management of the resistant biotype. Our findings showed that the wild radish biotype used exhibits cross-resistance to ALS-inhibiting herbicides due to the presence of the Try-574-Leu mutation in the target enzyme. Notably, herbicides with alternative mechanisms of action prove highly effective in controlling this resistant biotype, offering valuable options for weed management strategies.

Downloads

Download data is not yet available.

Author Biography

Antonio Mendes de Oliveira Neto, Universidade do Estado de Santa Catarina, Lages, SC, Brazil

References

AGOSTINETTO, D. et al. Changes in photosynthesis and oxidative stress in wheat plants submitted to herbicides application. Planta Daninha, 34: 1-9, 2016.

ASSUNÇÃO, N. S. et al. Seletividade do flumioxazin ao trigo. Revista Brasileira de Herbicidas, 16: 122-129, 2017.

BECKIE, H. J.; BUSI, R.; ZHANG, B. Multiple resistant wild radish. Weed Science, 52: 152-157, 2020.

CECHIN, J. et al. Mutation of Trp-574-Leu ALS gene confers resistance of radish biotypes to iodosulfuron and imazethapyr herbicides. Acta Scientiarum Agronomy, 39: 299-306, 2017.

COSTA, L. O.; RIZZARDI, M. A. Resistance of Raphanus raphanistrum to the herbicide metsulfuron-methyl. Planta Daninha, 32: 181-187, 2014.

COSTA, L. O. et al. Target‐site resistance and cross‐resistance to ALS‐inhibiting herbicides in radish and wild radish biotypes from Brazil. Agronomy Journal, 113: 236-249, 2021.

DÉLYE, C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Management Science, 69: 176-187, 2012.

FORLANI, G. et al. Chlorsulfuron tolerance and acetolactate synthase activity in corn (Zea mays L.) inbred lines. Weed Science, 39: 553-557, 1991.

HAN, H. et al. A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides. Pest Management Science, 68: 1164-1170, 2012.

HEAP, I. The International Herbicide-Resistant Weed Database. Disponível em: . Acesso em: 30 ago. 2023.

LU, H. et al. Non‐target‐site resistance to PDS‐inhibiting herbicides in a wild radish (Raphanus raphanistrum) population. Pest Management Science, 76: 2015-2020, 2020a.

LU, H. et al. Evolution of resistance to HPPD‐inhibiting herbicides in a wild radish population via enhanced herbicide metabolism. Pest Management Science, 76: 1929-1937, 2020b.

MALDANER, R. L.; SCHENEIDER, T. Seletividade do herbicida saflufenacil ao trigo. Ciência e Tecnologia, 3: 47-54, 2019.

MENDES, R. R. et al. A Trp574Leu target-site mutation confers imazamox resistance in multiple herbicide-resistant wild poinsettia populations from Brazil. Agronomy, 10: 1057, 2020.

MURPHY, B. P.; TRANEL, P. J. Target-site mutations conferring herbicide resistance. Plants, 8: 382, 2019.

OWEN, M. J.; MARTINEZ, N. J.; POWLES, S. B. Multiple herbicide-resistant wild radish (Raphanus raphanistrum) populations dominate Western Australian cropping fields. Crop and Pasture Science, 66: 1079-1085, 2015.

PIASECKI, C. et al. Seletividade de associações e doses de herbicidas em pós-emergência do trigo. Revista Brasileira de Herbicidas, 16: 286-295, 2017.

POWLES, S. B.; YU, Q. Evolution in action: plants resistant to herbicides. Annual Review of Plant Biology, 61: 317-347, 2010.

SINGH, S. et al. Target-site mutation accumulation among ALS-inhibitor-resistant palmer amaranth. Pest Management Science, 75: 1131-1139, 2019.

SCHMITZ, M. F. et al. Uso de clomazone associado ao safener dietholate para o manejo de plantas daninhas na cultura do trigo. Revista de Ciências Agroveterinárias, 17: 2-11, 2018.

TAN, M. K.; MEDD, R. W. Characterization of the acetolactato synthase (ALS) gene of Raphanus raphanistrum L. and the molecular assay of mutations associated with herbicide resistance. Plant Science, 163: 195-205, 2002.

TRANEL, P. J.; WRIGHT, T. R. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Science, 50: 700-712, 2002.

TRANEL, P. J.; WRIGHT, T. R.; HEAP, I. M. Mutations in herbicide-resistant weeds to ALS inhibitors. Disponível em: <http://www.weedscience.com>. Acesso em: 12 mar. 2021.

VARANASI, V. K.; BRABHAM, C.; NORSWORTHY, J. K. Confirmation and characterization of non–target site resistance to fomesafen in palmer amaranth (Amaranthus palmeri). Weed Science, 66: 702-709, 2018.

VELDHUIS, L. J. et al. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. Journal of Agricultural and Food Chemistry, 48: 2986-2990, 2011.

WALSH, M. J. et al. Multiple-herbicide resistance across four modes of action in wild radish (Raphanus raphanistrum). Weed Science, 52: 8-13, 2004.

YU, Q. et al. Resistance evaluation for herbicide resistance-endowing acetolactate synthase (ALS) gene mutations using Raphanus raphanistrum populations homozygous for specific ALS mutations. Weed Research, 52: 178-186, 2012.

YU, Q.; POWLES, S. B. Resistance to AHAS inhibitor herbicides: current understanding. Pest Management Science, 70: 1340-1350, 2014.

YU, Q. et al. ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum) populations. Weed Science, 51: 831-838, 2003.

ZEINEB, H. et al. Point mutations as main resistance mechanism together with P450-based metabolism confer broad resistance to different ALS-inhibiting herbicides in Glebionis coronaria from Tunisia. Frontiers in Plant Science, 12: 1-12, 2021.

Downloads

Published

06-02-2024

Issue

Section

Scientific Article