Effects of silage production with different mechanized sets on soil physical attributes

Authors

  • Samir Paulo Jasper Department of Soils and Agricultural Engineering, Universidade Federal do Paraná, Curitiba, PR https://orcid.org/0000-0003-3961-6067
  • Gabriel Ganancini Zimmermann Department of Soils and Agricultural Engineering, Universidade Federal do Paraná, Curitiba, PR https://orcid.org/0000-0002-9709-4458
  • Leonardo Leonidas Kmiecik Department of Soils and Agricultural Engineering, Universidade Federal do Paraná, Curitiba, PR https://orcid.org/0000-0002-7267-910X
  • Daniel Savi Department of Soils and Agricultural Engineering, Universidade Federal do Paraná, Curitiba, PR https://orcid.org/0000-0002-2519-0635

DOI:

https://doi.org/10.1590/1983-21252023v36n222rc

Keywords:

Maize. Soil porosity. Resistance to soil penetration.

Abstract

The evaluation of the physical attributes of the soil in cultivated areas is essential for understanding the impacts of agricultural operations, especially those with intense machine traffic. Therefore, the present study aimed to evaluate the physical attributes of the soil submitted to silage with different mechanized sets. A randomized block design was adopted with three treatments: forage harvester with a one-row cutting platform (T1), forage harvester with a three-row cutting platform (T2), and T2 with a forage harvester with a conveyor wagon. Before ensiling and 24 hours after the operation, intact samples of soil classified as Latossolo Vermelho-amarelo álico, intact, were collected to determine the micro, macro, and total porosity, soil density, and volumetric soil water content according to the methodology proposed by the Brazilian Agricultural Research Corporation (Embrapa). After ensiling, the resistance to soil penetration was measured with an electronic manual penetrometer, before and after ensiling, at the A horizon of the soil in the layers of 0.0-0.2 m and 0.2-0.4 m. We analyzed the data by establishing the confidence interval using the t-test at 10% probability. The sets reduce the macroporosity and total porosity of the soil in the 0.0-0.2 m and 0.2-0.4 m soil layers. T2 promoted greater total density in the 0.0–0.2 m layer. The silage increased the resistance to soil penetration to a depth of 0.15 m.

Downloads

Download data is not yet available.

References

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22: 711-728, 2013.

ASABE - American Society of Agricultural and Biological Engineers. S313.3. Soil cone penetrometer. St. Joseph, 2012, 66 p.

BARCELOS, A. F. et al. Valor nutritivo e características fermentativas da silagem de capim-elefante com diferentes proporções de casca de café. Ciência Animal Brasileira, 19: 1-12, 2018.

BATTIATO, A.; DISERENS, E. Tractor traction performance simulation on differently textured soils and validation: A basic study to make traction and energy requirements accessible to the practice. Soil and Tillage Research, 66: 18-32, 2017.

BERISSO, F. E. et al. Effects of the stress field induced by a running tyre on the soil pore system. Soil and Tillage Research, 131: 36-46, 2013.

BRADY, N. C.; WEIL, R. R. The nature and properties of soils. Pearson Education, 2008.

CAMBI, M. et al. Impact of wheeled and tracked tractors on soil physical properties in a mixed conifer stand. iForest-Biogeosciences and Forestry, 9: 89-94, 2015.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Serviço Nacional de Pesquisa de Solos: Manual de Métodos de Análise de Solo. 3. ed. Brasília, DF: EMBRAPA, 2017. 574 p.

GEE, G. W.; BAUDER, J. W. Particle-size analysis. In Methods of soil analysis. 2. ed. Madison, WI: Agronomy Monographs, 1986. 28 p.

JANULEVIČIUS, A. et al. Estimation of farm tractor performance as a function of time efficiency during ploughing in fields of different sizes. Biosystems Engineering, 179: 80-93, 2019.

JEMISON, J. M. et al. Soil Health of Recently Converted No-till Corn Fields in Maine. Communications in Soil Science and Plant Analysis, 50: 2384-2396, 2019.

LANZANOVA, M. E. et al. Atributos físicos do solo em sistema de integração lavoura-pecuária sob plantio direto. Revista Brasileira de Ciências do Solo, 31: 1131-1140, 2007.

LEES, K. J. et al. The effects of soil compaction mitigation on below-ground fauna: How earthworms respond to mechanical loosening and power harrow cultivation. Agriculture, Ecosystems & Environment, 232: 273-282, 2016.

LINHARES, A. J. S. et al. Soil compaction affects the silage quality of sunflower and Paiaguas palisadegrass (Brachiaria brizantha) grown on a Latosol in the Brazilian savana. Australian Journal of Crop Science, 14: 1121-1130, 2020.

MIALHE, L. G. Máquinas motoras na agricultura. 2. ed. São Paulo, SP: EDUSP, 1980. 189 p.

MOLIN, J. P.; DIAS, C. T. S.; CARBONERA, L. Estudos com penetrometria: Novos equipamentos e amostragem correta. Revista Brasileira de Engenharia Agrícola e Ambiental. 16: 584-590, 2012.

MORAES, M. T. et al. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil Tillage Research, 200: 1-14, 2020.

NAGAHAMA, H. J. et al. Comunicação Efeitos da escarificação mecânica nos atributos físicos do solo e agronômicos do capim elefante. Revista Ceres, 63: 741–746, 2016.

OLIVEIRA, M. P. et al. Efeito residual da gessagem e calagem na resistência à penetração obtida com dois penetrômetros em diferentes sistemas de manejo. Revista de Agricultura Neotropical, 4: 58-64, 2017.

PERES, J. G.; SOUZA, C. F.; LAVORENTI, N. A. Avaliação dos efeitos da cobertura de palha de cana-de-açúcar na umidade e na perda de água do solo. Revista Engenharia Agrícola, 30: 875-886, 2010.

RENČÍN, L.; POLCAR, A.; BAUER, F. The Effect of the Tractor Tires Load on the Ground Loading Pressure. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65: 1607-1614, 2017.

SALIRE, E. V.; HAMMEN, J. E.; HARDCASTLE, J. H. Compression of intact subsoils under short-duration loading. Soil & Tillage Research, 31: 235-248, 1994.

SHAH, A. N. et al. Soil compaction effects on soil health and cropproductivity: an overview. Environmental Science and Pollution Research, 24: 10056-10067, 2017.

SIMECKOVA, J. et al. Changes of physical properties of the soil after the passage of an agricultural tractor. Agrophys, 35: 97-105, 2021.

SZYMCZAK, D. A. et al. Compactação do solo causada por tratores florestais na colheita de Pinus taeda L. na reigão Sudoeste do Paraná. Revista Árvore, 38: 641-648, 2014.

UNGUREANU, N. et al. Agricultural soil compaction under the action of agricultural machinery. Simpozu Aktualni Zadaci Mehanizacue Poljoprivrede, 1: 31-42, 2015.

Downloads

Published

28-02-2023

Issue

Section

Agricultural Engineering