LIMA BEAN POPULATIONS ASSESSMENTS VIA REML/BLUP METHODOLOGY

Authors

DOI:

https://doi.org/10.1590/1983-21252022v35n405rc

Keywords:

Phaseolus lunatus. Genetic parameters. Mixed models.

Abstract

Based on its nutritional and economic value, the lima bean (Phaseolus lunatus L.) is the second most important species of the genus. It has high genetic diversity and potential for production and is considered an alternative food and income source. The objective of this study was to apply the restricted maximum likelihood/ best linear unbiased prediction (REML/ BLUP) methodology to estimate genetic parameters and predict genotypic values in F3 populations of lima beans. Twelve characteristics were evaluated in five populations with indeterminate growth habits (H39, H72, H53, H90, and H56). Model 83 from the Selegen program was used for analysis. Considering the genetic parameters, the highest values of genetic variance were for plant height and number of pods per plant. Pod thickness and seed width are favorable for breeding programs. Seed width selection gain was significant for populations H56 and H90 at 11.26 mm and 10.50 mm, respectively. As for the length and thickness of seeds, the gains were less significant, with population H53 showing the greatest gain. The REML/ BLUP methodology proved efficient in estimating genetic parameters and predicting gains in lima bean populations. The estimated selection gains indicated that the highest gains were obtained for plant height, the number of pods per plant, pod thickness, seed width, and the number of days to maturity. Populations H53 and H56 stood out for having large and white seeds, thus being potential populations for species improvement.

Downloads

Download data is not yet available.

References

AGHKHANI, M. H. et al. Physical properties of Christmas lima bean at different moisture content. International Agrophysics, 26: 341-346, 2012.

ALVES, A. U. et al. Emergência de plântulas de fava em função de posições e profundidades de semeadura. Bioscience Journal, 30: 33-42, 2014.

ASSUNÇÃO FILHO, J. R. et al. Selection of superior genotypes of lima bean landraces by multivariate approach. Revista Caatinga, 35: 87-95, 2022.

BALDISSERA, J. N. et al. Genetics factors related with the inheritance in autogamous plant populations. Revista de Ciências Agroveterinárias, 13: 181-189, 2014.

BARREIRO NETO, M. et al. Características morfológicas e produtivas em acessos de feijão-fava consorciados. Tecnologia & Ciência Agropecuária, 9: 23-27, 2015.

BARROSO NETO, A. M. et al. Genetic variability and selection of extra-early cowpea progenies. Revista Caatinga, 30: 698-707, 2017.

BIOVERSITY INTERNATIONAL. Guidelines for development of crop descriptor list. Bioversity Technical Bulletin Series, 12: 2-2, 2007.

BORÉM, A.; MIRANDA, G. V. Melhoramento de plantas. 6. ed. Viçosa, MG: Editora UFV, 2013. 523 p.

BURATTO, J. S. et al. Adaptabilidade e estabilidade produtiva em genótipos precoces de feijão no Estado do Paraná. Semina: Ciências Agrárias, 28: 373- 380, 2007.

CHEL-GUERRERO, L. et al. Lima Bean (Phaseolus lunatus L) Protein Hydrolysates with ACE-I Inhibitory Activity. Food and Nutrition, 3: 511- 521, 2012.

CHENG, A. et al. In search of alternative proteins: unlocking the potential of underutilized tropical legumes. Food Security, 11: 1205-1215, 2019.

CRUZ, C. D.; REGAZZI, A. J.; CARNEIRO, P. C. S. Modelos biométricos aplicados ao melhoramento genético. 4 ed. Viçosa: Editora UFV, 2012. 514 p.

DOBERT, R. C.; BLEVINS, D. G. Effect of seed size and plant growth on nodulation and nodule development in lima bean (Phaseolus lunatus L.). Plant and Soil, 148: 11-19, 1993.

GOMES, F. P. Curso de estatística experimental. 15 ed. Piracicaba, SP: FEALQ, 2009. 468 p.

IBGE – Instituto Brasileiro de Geografia e Estatística - Banco de dados agregados: produção agrícola municipal. 2021. Disponível em: < https://sidra.ibge.gov.br/tabela/1612#resultado>. Acesso em 09 jun. 2022.

LOPES, A. C. A.; GOMES, R. L. F.; ARAÚJO, A. S. F. A cultura do feijão-fava no Meio Norte do Brasil. Teresina: ADUFPI, 2010. 272 p.

PEGADO, C. M. A. et al. Decomposição superficial e sub superficial de folhas de fava (Phaseolus lunatus L.) na região do Brejo da Paraíba, Brasil. Revista Caatinga, 21: 218-223, 2008.

PENHA, J. S. et al. Estimation of natural outcrossing rate and genetic diversity in Lima bean (Phaseolus lunatus L. var. lunatus) from Brazil using SSR markers: implications for conservation and breeding. Genetic Resources and Crop Evolution, 64: 1355-1364, 2017.

PIMENTEL, A. J. B. et al. Estimação de parâmetros genéticos e predição de valor genético aditivo de trigo utilizando modelos mistos. Pesquisa Agropecuária Brasileira, 49: 882-890, 2014.

RAMOS, H. C. C. et al. Combined Selection in Backcross Population of Papaya (Carica papaya L.) by the Mixed Model Methodology. American Journal of Plant Sciences, 5: 2973-2983, 2014.

RESENDE, M. D. V. O Software Selegen-Reml/Blup. Campo Grande, PB: EMBRAPA. 2006. 305 p.

RESENDE, M. D. V. Genética quantitativa e de populações. 1. ed. Visconde do Rio Branco, MG: Suprema, 2015. 463 p.

RESENDE, M. D. V. Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16: 330-339, 2016.

RESENDE, M. D. V.; DUARTE, J. B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, 3: 182-194, 2007.

SILVA, J. D. L. Diversidade, estrutura e erosão genética do feijão-fava (Phaseolus lunatus) no nordeste do brasil. Universidade Federal do Piauí. 2019. 121 f. Tese (Doutorado em Agronomia: Área de Concentração em Agricultura Tropical) – Universidade Federal do Piauí, Teresina, 2019.

SOUSA, C. M. B. et al. Selection of snap bean F2 progenies for production using the REML/BLUP methodology. Horticultura Brasileira, 35: 33-40, 2017.

STORCK, L. et al. Avaliação da precisão experimental em ensaios de competição de cultivares de soja. Ciência e Agrotecnologia, 34: 572-578, 2010.

TEIXEIRA, F. G. et al. Inheritance of Precocity and of Agronomic Characters in Soybean. Genetics and Molecular Research, 6: 1-12, 2017.

TORRES FILHO, J. et al. Genotype by environment interaction in green cowpea analyzed via mixed models. Revista Caatinga, 30: 687-697, 2017.

Downloads

Published

20-09-2022

Issue

Section

Agronomy