ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION
DOI:
https://doi.org/10.1590/1983-21252022v35n424rcKeywords:
Greenhouse gases. Soil management. Modeling. Artificial intelligence.Abstract
Quantifying soil gas emissions is costly, since it requires specific methodologies and equipment. The objective of this study was to evaluate modeling by nonlinear regression and artificial neural networks (ANN) to estimate CO2 emissions caused by soil managements. CO2 emissions were evaluated in two different soil management systems: no-tillage and minimum tillage. Readings of CO2 flow were carried out by an automated closed system chamber; soil temperature, water content, density, and total organic carbon were also determined. The regression model and the ANN models were adjusted based on the correlation of the variables measured in the areas where the soil was managed with no-tillage and minimum tillage with data of CO2 emission. Artificial neural networks are more accurate to determine correlations between CO2 emissions and soil temperature, water content, density, and organic carbon content than linear regression.
Downloads
References
ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22: 711-728, 2014.
BRAGA, A. P.; CARVALHO A. P. L. F.; LUDEMIR, T. B. Redes Neurais Artificiais: Teoria e Aplicações. Belo Horizonte, MG: LTC - Livros Técnicos e Científicos Editora S.A., 2000. 262 p.
BELCAVELLO, M. O. et al. Artificial neural networks in estimating the productivity of a forest harvesting machine. Journal of Engineering, 12: 52-58, 2022.
BURAGIENĖ, S. et al. Relationship between CO2 emissions and soil properties of differently tilled soils. Science of the Total Environment, 662: 786-795, 2019.
CHAPLOT, V. et al. Water erosion-induced CO2 emissions from tilled and no-tilled soils and sediments. Agriculture, Ecosystems & Environment, 159: 62-69, 2012.
DENG, L. et al. Soil GHG fluxes are altered by N deposition: New data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools. Global Change Biology, 26: 2613-2629, 2020.
DIAO, W. et al. Influences of soil bulk density and texture on estimation of surface soil moisture using spectral feature parameters and an artificial neural network algorithm. Agriculture, 11: 1- 20, 2021.
DING, D.; WANG, Z.; HAN, Q. L. Neural-network-based output-feedback control with stochastic communication protocols. Automatica, 106: 221-229, 2019.
DOWHOWER, S. L. et al. Soil greenhouse gas emissions as impacted by soil moisture and temperature under continuous and holistic planned grazing in native tallgrass prairie. Agriculture, Ecosystems & Environment, 287: 1-11, 2020.
EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Sistema brasileiro de classificação de solos. 5. ed. Brasília, DF: Embrapa Solos, 2018. 353 p.
FARINA, R. et al. Modeling regional soil C stocks and CO2 emissions under Mediterranean cropping systems and soil types. Agriculture, Ecosystems and Environment, 238: 128-141, 2017.
FERNANDES, M. M. H. et al. Estimation of soil organic matter content by modeling with artificial neural networks. Geoderma, 350: 46-51, 2019.
GOMES, L. C. et al. Modelagem e mapeamento dos estoques de carbono orgânico do solo no Brasil. Geoderma, 340: 337-350, 2019.
HAYKIN, S. Redes neurais: princípios e prática. 2. ed. Porto Alegre, RS, 2007. 900 p.
HUANG, Y. et al. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agriculture, Ecosystems & Environment, 268: 144-153, 2018.
JEREMIAH, J. J. et al. Results of Application of Artificial Neural Networks in Predicting Geo-Mechanical Properties of Stabilised Clays - A Review. Geotechnics, 1: 147-171, 2021.
LACERDA, L. C. et al. Prediction of Mechanical Availability in Mechanized Eucalyptus Forest Harvesting Using Artificial Neural Networks. Journal of Agricultural Science, 14: 1-7, 2022.
LEAL, F. A. et al. Redes neurais artificiais na estimativa de volume em um plantio de eucalipto em função de fotografias hemisféricas e número de árvores. Revista Brasileira de Biometria, 33: 233-249, 2015.
LIMA, J. R. S. et al. Impacts of land-use changes on soil respiration in the semi-arid region of Brazil. Revista Brasileira de Ciência do Solo, 44: e0200092, 2020.
LIU, Y. et al. Emission mechanism and reduction countermeasures of agricultural greenhouse gases–a review. Greenhouse Gases: Science and Technology, 9: 160-174, 2019.
MARTÍN, J. R. et al. Assessment of the soil organic carbon stock in Spain. Geoderma, 264: 117-125, 2016.
MELAKU, N. D. et al. Predicting nitrous oxide emissions after the application of solid manure to grassland in the United Kingdom. Journal of Environmental Quality, 49: 1-13, 2020.
NAWAZ, A. et al. Rice–wheat cropping systems in South Asia: issues, options and opportunities. Crop and Pasture Science, 70: 395-427, 2019.
NIKOLENKO, O. et al. Dynamics of greenhouse gases in groundwater: hydrogeological and hydrogeochemical controls. Applied Geochemistry, 105: 31-44, 2019.
OERTEL, C. et al. Greenhouse gas emissions from soils - A review. Geochemistry, 76: 327-352, 2016.
RIAHI, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42: 153-168, 2017.
RUTKOWSKA, B. et al. Impact of reduced tillage on CO2 emission from soil under maize cultivation. Soil and Tillage Research, 180: 21-28, 2018.
RUBIO, V. E.; DETTO, M. Spatiotemporal variability of soil respiration in a seasonal tropical forest. Ecology and Evolution, 7: 7104-7116, 2017.
SARKAR, T.; MISHRA, M. Soil erosion susceptibility mapping with the application of logistic regression and artificial neural network. Journal of Geovisualization and Spatial Analysis, 2: 1-17, 2018.
SHAKOOR, A. et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Science of The Total Environment, 750: 1-16, 2021.
SILVA, B. O. et al. Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil and Tillage Research, 186: 224-232, 2019.
SILVA, F. R. D. et al. Physical properties of a Hapludox after three decades under different soil management systems. Revista Brasileira de Ciência do Solo, 40: e0140331, 2016.
THANGAVEL, R. et al. Evaluating organic carbon fractions, temperature sensitivity and artificial neural network modeling of CO2 efflux in soils: Impact of land use change in subtropical India (Meghalaya). Ecological Indicators, 93: 129-141, 2018.
VAZQUEZ, E. et al. Effects of no-tillage and liming amendment combination on soil carbon and nitrogen mineralization. European Journal of Soil Biology, 93: 103090, 2019.
VEDARAMAN, N. et al. Ultrasonic extraction of natural dye from Rubia Cordifolia, optimisation using response surface methodology (RSM) & comparison with artificial neural network (ANN) model and its dyeing properties on different substrates. Chemical Engineering and Processing: Process Intensification, 114: 46-54, 2017.
WANG, H. et al. No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. Journal of Environmental Management, 261: 1-7, 2020.
XAVIER, C. V. et al. Crop rotation and succession in a no-tillage system: implications for CO2 emission and soil attributes. Journal of Environmental Management, 245: 8-15, 2019.
YUSTE, J. C. et al. Cascading effects associated with climate-change-induced conifer mortality in mountain temperate forests result in hot-spots of soil CO2 emissions. Soil Biology and Biochemistry, 133: 50-59, 2019.
ZHANG, Y. et al. Spatial identification of land use functions and their tradeoffs/synergies in China: Implications for sustainable land management. Ecological Indicators, 107: 1-14, 2019.
ZHAO, R. et al. Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land Use Policy, 72: 480-492, 2018.
ZOU, J. et al. Differential responses of soil CO2 and N2O fluxes to experimental warming. Agricultural and Forest Meteorology, 259: 11-22, 2018.
Downloads
Published
Issue
Section
License
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).