CYTOKININ AND AUXIN INFLUENCE ON GROWTH AND QUALITY OF WATERMELON IRRIGATED WITH SALINE WATER

Authors

  • Gisele Lopes dos Santos Department Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0002-1134-4672
  • Francisco Hevilásio Freire Pereira Center for Agri-Food Science and Technology, Universidade Federal de Campina Grande, Pombal, PB https://orcid.org/0000-0001-5557-3226
  • Valéria Fernandes de Oliveira Sousa Center for Agricultural Sciences, Universidade Federal da Paraíba, Areia, PB https://orcid.org/0000-0002-6124-0898
  • Cesenildo de Figueiredo Suassuna Center for Agri-Food Science and Technology, Universidade Federal de Campina Grande, Pombal, PB https://orcid.org/0000-0002-4468-1376
  • Albanisa Pereira de Lima Santos Center for Agri-Food Science and Technology, Universidade Federal de Campina Grande, Pombal, PB https://orcid.org/0000-0002-9480-8646
  • Aurélio Paes Barros Júnior Department Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0002-6983-8245

DOI:

https://doi.org/10.1590/1983-21252022v35n319rc

Keywords:

Citrullus lanatus L. Growth regulators. Plant production. Salinization.

Abstract

Watermelon has great economic relevance, but edaphoclimatic factors and inadequate management have favored the salinization of the water used for irrigation, which is a limiting factor for the growth and production of the crop. However, it is considered that the use of growth regulators belonging to the group of cytokinins and auxins may contribute to the development and yield of crops, even under adverse conditions such as salinity. Thus, the objective was to evaluate the influence of cytokinin and auxin proportions on the growth and quality of watermelon irrigated with saline water. The experimental design was completely randomized, with four replicates and 5 x 2 factorial, referring to five proportions of growth regulators (0/100; 25/75; 50/50; 75/25 and 100/0%) corresponding to concentrations of 1.0 and 10.0 mg L-1 of forchlorfenuron (CPPU)/ indoleacetic acid (IAA), and two salinity levels, one composed of water without adding salt (0.3 dS m-1) and the other with 2.0 dS m-1 electrical conductivity. The proportions of cytokinin and auxin influenced the growth and quality of watermelon subjected to salinity in irrigation water. The 25/75% (CPPU/IAA) proportion favored smaller decreases in leaf area and total dry mass under a saline condition of 2.0 dS m-1. For fresh and dry fruit mass, the 75/25% (CPPU/IAA) proportion favored smaller reductions. Fruit firmness and soluble solids were favored by the proportions 25/75 and 50/50% (CPPU/IAA) at EC of 2.0 dS m-1. Acidity was only influenced by the proportion of 50/50% (CPPU/IAA) between the electrical conductivity levels.

 

 

Downloads

Download data is not yet available.

References

AOAC - Association of Official Analytical Chemistry. Official methods of analysis of the association of official analytical chemists. Gaithersburg: AOAC International, 2005.

BIELACH, A.; HRTYAN M.; TOGNETTI V. B. Plants under Stress: Involvement of Auxin and Cytokinin. International Journal of Molecular Sciences, 18: 1-29, 2017.

COSTA, A. R. F. C. et al. Produção e qualidade de melancia cultivada com água de diferentes salinidades e doses de nitrogênio. Revista Brasileira de Engenharia Agrícola e Ambiental, 17: 947-954, 2013.

DANTAS, E. P. et al. Produção e qualidade do meloeiro sob osmocondicionamento da semente e níveis de salinidade da água. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 13: 08-15, 2018.

DANTAS, M. S. M. et al. Rendimento e qualidade de melancia cultivada sob proteção de agrotêxtil combinado com mulching plástico. Revista Brasileira de Engenharia Agrícola e Ambiental, 17: 824-829, 2013.

FANG, S.; HOU, X.; LIANG, X. Response Mechanisms of Plants Under Saline-Alkali Stress. Frontiers in Plant Science, 12: 1-20, 2021.

FERREIRA, D. F. Sisvar: um guia dos seus procedimentos de comparações múltiplas Bootstrap. Ciência e Agrotecnologia, 38: 109-112, 2014.

GAMA, R. N. C. S. et al. Taxa de sobrevivência e desempenho agronômico de melancia sob enxertia. Horticultura Brasileira, 31: 128-132, 2013.

GHANI, M. N. O.; AWANG, Y.; ISMAIL, M. F. Effects of NaCl salinity on leaf water status, proline and mineral ion content of four Cucurbitaceae species. Australian Journal of Crop Science, 12: 1434-1439, 2018.

GUPTA, B.; HUANG, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics, 2014: 1-18, 2014.

HOAGLAND, D. R.; ARNON, D. I. The water culture method for growing plants without soils. Berkeley: California Agricultural Experimental Station, 1950.

IAL - Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz: Métodos físico-químicos para análise de alimentos. 1. ed. São Paulo, SP: IAL, 2008. 1000 p.

IQBAL, M.; ASHRAF, M. Tolerância ao sal e regulação de trocas gasosas e da homeostase hormonal pelo condicionamento osmótico com auxinas em trigo. Pesquisa Agropecuária Brasileira, 48: 1210-1219, 2013.

LATEF, A. A. A.; HASANUZZAMAN, M.; ARIF, M. T. U. Mitigation of salinity stress by exogenous applicationof cytokinin in faba bean (Vicia faba L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49: 1-22, 2021.

MARTINS, D. C. et al. Desenvolvimento inicial de cultivares de melancia sob estresse salino. Agropecuária Científica no Semi-Árido, 8: 62-68, 2013.

MATOS, J. P. et al. Floração e rendimento de frutos da abobrinha italiana ‘Diaane’ sob aplicação de regulador vegetal e fertilizante foliar. Revista Brasileira de Engenharia de Biossistemas, 11: 107-115, 2017.

NASCIMENTO, T. L. et al. Agronomic characterization and heterosis in watermelon genotypes. Pesquisa Agropecuaria Tropical, 48: 170-177, 2018.

OLATUNJI, D.; GEELEN, D.; VERSTRAETEN, I. Control of endogenousauxin levels in plant root development. International Journalof Molecular Sciences, 18: 1-29, 2017.

OLIVEIRA, F. A. et al. Uso de bioestimulante como agente amenizador do estresse salino na cultura do milho pipoca. Revista Ciência Agronômica, 47: 307-315, 2016.

R CORE TEAM. R: A language and environment for statistical computing. Disponível em: <https://www.R-project.org/>. Acesso em: 26 de mar. 2022.

SANTOS, G. L. et al. Growth and accumulation of dry mass in squashes with fruiting induced by cytokinin and auxin. Revista Brasileira de Ciencias Agrarias, 15: 1-8, 2020.

SILVEIRA, J. A. G. et al. Mecanismos biomoleculares envolvidos com a resistência ao estresse salino em plantas. In: GHEYI, H. R. et al. (Eds.). Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados. Fortaleza, CE: Instituto Nacional de Ciência e Tecnologia em Salinidade, 2016. v. 1, cap. 13, p. 181-196.

SMOLKO, A. et al. Altered Root Growth, Auxin Metabolism and Distribution in Arabidopsis thaliana Exposed to Salt and Osmotic Stress. International Journal of Molecular Sciences, 22: 79-93, 2021.

SOUSA, V. F. O. et al. Growth and gas changes of melon seedlings submitted to water salinity. Revista Brasileira de Engenharia Agricola e Ambiental, 23: 90-96, 2019.

SUN, L. J. et al. Electrochemical mapping of indole-3-acetic acid and salicylic acid in whole pea seedlings under normal conditions and salinity. Sensors and Actuators B: Chemical, 276: 545-551, 2018.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre, RS: Artmed, 2017. 888 p.

WANI, S. H. et al. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal, 4: 162-176, 2016.

Downloads

Published

12-07-2022

Issue

Section

Agricultural Engineering