Hydrogen peroxide in the acclimation of colored-fiber cotton genotypes to salt stress

Authors

  • Luana Lucas de Sá Almeida Veloso Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB https://orcid.org/0000-0003-0537-7985
  • Carlos Alberto Vieira de Azevedo Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB https://orcid.org/0000-0001-7336-1243
  • Reginaldo Gomes Nobre Department of Science and Technology, Universidade Federal Rural do Semi-Árido, Caraúbas, RN https://orcid.org/0000-0002-6429-1527
  • Geovani Soares de Lima Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB https://orcid.org/0000-0001-9960-1858
  • Idelvan José da Silva Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB https://orcid.org/0000-0001-9559-8663
  • Cassiano Nogueira de Lacerda Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB https://orcid.org/0000-0002-4132-1287

DOI:

https://doi.org/10.1590/1983-21252023v36n218rc

Keywords:

Gossypium hirsutum L. Salinity. H2O2.

Abstract

The excess of salts in irrigation water restricts agricultural exploitation in arid and semi-arid regions. Thus, searching for strategies of cultivation under salt stress conditions is important for the expansion of irrigated agriculture in these regions. Thus, the objective of this study was to evaluate the gas exchange and growth rates of naturally colored-fiber cotton genotypes irrigated with saline water and under exogenous foliar application of hydrogen peroxide concentrations. The experiment was carried out under greenhouse conditions, in Campina Grande - PB, using the randomized block experimental design and 4 × 3 × 2 factorial arrangement, with four concentrations of hydrogen peroxide - H2O2 (0, 25, 50, and 75 µM), three colored-fiber cotton genotypes - CG (BRS Rubi; BRS Topázio; BRS Verde) and two levels of electrical conductivity of water - ECw (0.8 and 5.3 dS m-1), with three replicates. Irrigation using water with electrical conductivity of 5.3 dS m-1 associated with foliar application of 50 µM of hydrogen peroxide favors gas exchange and growth rates of BRS Rubi cotton, at 60 days after sowing. Salinity of 5.3 dS m-1 associated with foliar applications of 50 µM of hydrogen peroxide increased the percentage of cell damage and the internal CO2 concentration, but reduced the stomatal conductance, transpiration, CO2 assimilation rate, and growth rates of BRS Topázio cotton.

Downloads

Download data is not yet available.

References

BENINCASA, M. M. P. Análise de crescimento de plantas: noções básicas. Jaboticabal, SP: FUNEP, 2003. 41 p.

BEZERRA, I. L. et al. Interaction between soil salinity and nitrogen on growth and gaseous exchanges in guava. Revista Ambiente & Água, 13: e2130, 2018.

CAMPOS, H. et al. Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery. Environmental and Experimental Botany, 98: 56-64, 2014.

CARVALHO, F. E. L. et al. Aclimatação ao estresse salino em plantas de arroz induzida pelo pré-tratamento com H2O2. Revista Brasileira de Engenharia Agrícola e Ambiental, 15: 416-423, 2011.

DIAS, A. S. et al. Growth and gas exchanges of cotton under water salinity and nitrogen-potassium combination. Revista Caatinga, 33: 470-479, 2020.

FERRAZ, R. L. S. et al. Photosynthetic pigments, cell extrusion and relative leaf water content of the castor bean under silicon and salinity. Revista Brasileira de Engenharia Agrícola e Ambiental, 19: 841-848, 2015.

GONDIM, F. A. et al. Enhanced salt tolerance in maize plants induced by H2O2 leaf spraying is associated with improved gas exchange rather than with non-enzymatic antioxidant system. Theoretical and Experimental Plant Physiology, 25: 251-260, 2013.

GOVAERTS, B. et al. Influence of permanent planting in high bed and residue management on physical and chemical soil quality in rainfed corn/wheat systems. Plant and Soil, 291: 39-54, 2007.

HAIR, F. J. et al. Análise multivariada de dados. Porto Alegre, RS: Bookman, 2009. 688 p.

LIMA, G. S. et al. Produção da mamoneira cultivada com águas salinas e doses de nitrogênio. Revista Ciência Agronômica, 46: 1-10, 2015.

LIU, L. et al. Hydrogen peroxide alleviates salinity-induced damage by increasing proline buildup in wheat seedlings. Plant Cell Reports, 39: 567–575, 2020.

NOBRE, R. G. et al. Teor de óleo e produtividade da mamoneira de acordo com a adubação nitrogenada e irrigação com água salina. Pesquisa Agropecuária Brasileira, 47: 991-999, 2012

NOVAIS, R. F.; NEVES, J. C. L.; BARROS, N. F. Métodos de pesquisa em fertilidade do solo. Brasília, DF: Embrapa-SEA, 1991. 392 p.

OLIVEIRA, L. L. P. et al. Tolerância de cultivares de algodão (Gossypium hirsutum L.) à salinidade da água de irrigação. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 8: 232-237, 2013.

PANHWAR, M.; KEERIO, M. I.; ROBERT, M. R. Evaluating changes in wheat genotypes caused by hydrogen peroxide during seed treatment and their involvement in salt tolerance. Agricultural Engineering and Veterinary Sciences, 33: 23-36, 2017.

PINHEIRO, F. W. A. et al. Gas exchange and yellow passion fruit production under irrigation strategies using brackish water and potassium. Revista Ciência Agronômica, 53: e20217816, 2022.

RICHARDS, L. A. Diagnóstico e melhoria de solos salinos e alcalinos. Washington: EUA, Departamento de Agricultura, 1954. 160 p.

SABOYA, R.; FERREIRA, M.; CAVALCANTI, J. Seleção de genótipos de algodoeiro para resistência ao estresse salino. In: CONGRESSO BRASILEIRO DO ALGODÃO, 12., 2017, Maceió. Anais... Maceió: Abrapa, 2017. p. 1-8

SALES, J. R. S. et al. Physiological indices of okra under organomineral fertilization and irrigated with salt water. Revista Brasileira de Engenharia Agrícola e Ambiental, 25: 466-471, 2021.

SANTOS, J. B. et al. Morfofisiologia e produção do algodoeiro herbáceo irrigado com águas salinas e adubado com nitrogênio. Comunicata Scientiae, 7: 86-96, 2016.

SANTOS, L. C. et al. Peróxido de hidrogênio como atenuante do estresse salino na formação de mudas de pitaia vermelha (hylocereus costaricensis). Brazilian Journal of Development, 6: 27295-27308, 2020.

SHI-YING, Z. et al. Salt tolerant bacteria and growth promoters of high-yielding rice plants. Journal Microbiology, 64: 968–978, 2018.

SILVA, A. A. et al. Salt stress and exogenous application of hydrogen peroxide on the photosynthetic parameters of soursop. Revista Brasileira de Engenharia Agrícola e Ambiental, 23: 257-263, 2019a.

SILVA, A. A. et al. Tolerance to salt stress in soursop seedlings under different methods of H2O2 application. Revista Ciência Agronômica, 52: e20207107, 2021

SILVA, E. M. et al. Growth and gas exchanges in soursop under irrigation with saline water and nitrogen sources. Revista Brasileira de Engenharia Agrícola e Ambiental, 22: 776-781, 2018.

SILVA, F. D. F. et al. Extravasamento de eletrólitos em algodão herbáceo submetido a alta temperatura e elevado nível de CO2. In: CONGRESSO BRASILEIRO DO ALGODÃO, 2011, 8., São Paulo. Anais... São Paulo: Embrapa Algodão, 2011. p. 528-533.

SILVA, P. C. C. et al. Avaliação de métodos de aplicação de H2O2 para aclimatação de plantas de girassol à salinidade. Water Resources and Irrigation Management, 8: 1- 4, 2019b.

SILVA, S. S. et al. Gas exchanges and production of watermelon plant under salinity management and nitrogen fertilization. Pesquisa Agropecuária Tropical, 49: e54822, 2019c.

SOARES, L. A. A. et al. Gas exchanges and production of colored cotton irrigated with saline water at different phenological stages. Revista Ciência Agronômica, 49: 239-248, 2018.

SOUZA, L. P. et al. Formation of ‘Crioula’ guava rootstock under saline water irrigation and nitrogen doses. Revista Brasileira de Engenharia Agrícola e Ambiental, 20: 739-745, 2016.

SUN, Y. et al. Exogenous application of hydrogen peroxide alleviates drought stress in cucumber seedlings. South African Journal of Botany, 106: 23-28, 2016.

TEIXEIRA, P. C. et al. Manual de métodos de análise de solo. 3. ed. Brasília, DF: Embrapa Solos, 2017. 573 p.

TERZI, R. et al. Hydrogen peroxide pretreatment induces osmotic stress tolerance by influencing osmolyte and abscisic acid levels in maize leaves. Journal of Plant Interactions, 9: 559-565, 2014.

VASILAKOGLOU, I. et al. Carbon Assimilation, Isotope Discrimination, Proline and Lipid Peroxidation Contribution to Barley (Hordeum vulgare) Salinity Tolerance. Plants, 10: 1-18, 2021.

VELOSO, L. L. S. A. et al. Methods of hydrogen peroxide application in soursop seedlings irrigated with saline water. Comunicata Scientiae, 12: e3288, 2021.

WANDERLEY, J. A. C. et al. Dano celular e fitomassa do maracujazeiro amarelo sob salinidade da água e adubação nitrogenada. Revista Caatinga, 33: 757-765, 2020.

WANI, S. H. et al. Engineering salinity tolerance in plants: progress and prospects. Planta, 251: 1-29, 2020.

YANG, S. L.; LAN, S. S.; GONG, M. Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. Journal of Plant Physiology, 166: 1694-1699, 2009.

Downloads

Published

28-02-2023

Issue

Section

Agricultural Engineering