GROWTH RATE, PATHOGENICITY AND FUNGICIDE SENSITIVITY OF Macrophomina spp. FROM WEEDS, MELON AND WATERMELON ROOTS

Authors

  • Andreia Mitsa Paiva Negreiros Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0002-9544-2527
  • Naama Jéssica de Assis Melo Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0002-1437-3436
  • Marcia Michelle de Queiroz Ambrósio Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0002-5033-9745
  • Glauber Henrique de Sousa Nunes Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0002-7189-2283
  • Rui Sales Júnior Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN https://orcid.org/0000-0001-9097-0649

DOI:

https://doi.org/10.1590/1983-21252022v35n304rc

Keywords:

Citrullus lanatus. Cucumis melo. Salinity. Soilborne fungi. Temperature.

Abstract

Macrophomina (Botryosphaeriaceae) is one of the main genera of soilborne phytopathogenic fungi, which causes root and seed rot in more than 800 host plants worldwide. Recent phylogenetic studies identified the species M. phaseolina and M. pseudophaseolina in Trianthema portulacastrum and Boerhavia diffusa in melon and watermelon production areas in northeastern Brazil. Therefore, the objective of this study was: i) to verify the effect of temperature and salinity on the mycelial growth of M. phaseolina, M. pseudophaseolina and M. euphorbiicola, ii) to assess their pathogenicity on melon and watermelon seedlings, and iii) to determine their sensitivity to the fungicide carbendazim. The optimal temperature for mycelial growth rate (MGR) for Macrophomina spp. ranged from 27.18 ºC (CMM4771 – M. pseudophaseolina) to 31.80 ºC (CMM4763 – M. phaseolina). For the effect of salinity on mycelial growth of Macrophomina isolates, the EC50 ranged from 103.76 (CMM4868 – M. euphorbiicola) to 315.25 mM (CMM4801 – M. pseudophaseolina). The pathogenicity test demonstrated that M. phaseolina, M. pseudophaseolina and M. euphorbiicola are pathogenic on melon with M. phaseolina exhibiting a higher level of virulence. Macrophomina euphorbiicola isolates did not cause disease in watermelon. The most sensitive isolates to the fungicide carbendazim were CMM4868, CMM4867 (M. euphorbiicola) and CMM1531 (M. phaseolina) with EC50 of 0.003, 0.012 and 0.012 mg.L-1 a.i., respectively. All Macrophomina spp. used in these experiments were pathogenic to the tested melon and watermelon cultivars with the exception of the M. euphorbiicola isolate that did not cause damage to watermelon.

Downloads

Download data is not yet available.

References

AGROFIT. Sistema de Agrotóxicos Fitossanitários. Disponível em: <http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons>. Acesso em: 17 jan. 2022.

AMBRÓSIO, M. M. Q. et al. Screening a variable germplasm collection of Cucumis melo L. for seedling resistance to Macrophomina phaseolina. Euphytica, 206: 287-300, 2015.

BRITO, A. C. Q. et al. First report of Macrophomina pseudophaseolina causing stem dry rot in cassava in Brazil. Journal of Plant Pathology, 101: 1245-1245, 2019.

CARBONE, I.; KOHN, L. M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91: 553-556, 1999.

CARDONA, R. Distribución vertical de esclerocios de Macrophomin phaseolina en um suelo infestado naturalmente en el estado Portuguesa. Revista de la Facultad de Agronomia, 23: 284-291, 2006.

CERVANTES-GARCIA, D. C. et al. Osmotic potential effects on in vitro growth, morphology and pathogenicity of Macrophomina phaseolina. Journal of Phytopathology, 151: 456-462, 2003.

CHAUHAN, M. S. Relative efficiency of different methods for the control of seedling disease of cotton by Rhizoctonia bataticola. Indian Journal of Mycology and Plant Pathology, 18: 25–30, 1988.

CORREIA, K. C. et al. Fitness components of Monosporascus cannonballus isolates from northeastern Brazilian melon fields. Tropical Plant Pathology, 39: 217-223, 2014.

CSÖNDES, I. Effect of culture media on the growth and morphology of hungarian Macrophomina phaseolina isolates. Acta Agronomica Hungarica, 60: 109-129, 2012.

DHINGRA, O. D.; SINCLAIR, J. B. Biology and pathology of Macrophomina phaseolina. Viçosa, MG: Universidade Federal de Viçosa, 1978. 166 p.

EDGINGTON, L. V.; KHEW, K. L.; BARROW, G. L. Fungitoxic spectrum of benzimidazole compounds. Phytopathology, 61: 42-44, 1971.

FARR, D. F.; ROSSMAN, A. Y. U.S. National Fungus Collections, ARS, USDA. Fungal Databases. Disponível em: <https://nt.ars-grin.gov/fungaldatabases/>. Acesso em: 17 jan. 2022.

FRAC - Fungicide Resistance Action Committee. FRAC Code List ©*2021: Fungal control agents sorted by cross resistance pattern and mode of action. 2021. Disponível em: <https://www.frac.info/>. Acesso em: 17 jan. 2022.

GOIDÀNICH, G. Revisione del genere Macrophomina Petrak. Specie tipica: Macrophomina phaseolina (Tassi) G. Goid. n. comb. nec M. phaseoli (Maubl.) Ashby. Annali della Sperimentazione Agraria, 1: 449-461, 1947.

INMET - Instituto Nacional de Metereologia. Normais Climatológicas do Brasil (1981-2010). Disponível em: <http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas>. Acesso em: 17 jan. 2022.

KOLDE, R. Pheatmap: Pretty Heatmaps. R package version 1.0.12. Disponível em: <https://CRAN.R-project.org/package=pheatmap>. Acesso em: 17 jan. 2022.

LE, S.; JOSSE, J.; HUSSON, F. FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25: 1-18, 2008.

LODHA, S.; MAWAR, R. Population dynamics of Macrophomina phaseolina in relation to disease management: A review. Journal of Phytopathology, 168: 1-17, 2020.

MACHADO, A. R. et al. Bayesian analyses of five gene regions reveal a new phylogenetic species of Macrophomina associated with charcoal rot on oilseed crops in Brazil. European Journal of Plant Pathology, 153: 89-100, 2019.

MAYEK-PÉREZ, N.; LÓPEZ-CASTAÑEDA, C.; ACOSTA-GALLEGOS, J. A. Variación en características culturales in vitro de aislamientos de Macrophomina phaseolina y su virulencia en frijol. Agrociencia, 31: 187-195, 1997.

MENGISTU, A. et al. Effect of charcoal rot on selected putative drought tolerant soybean genotypes and yield. Crop Protection, 105: 90-101, 2018.

NDIAYE, M. et al. Is the recently described Macrophomina pseudophaseolina pathogenically different from Macrophomina phaseolina? African Journal of Microbiology Research, 9: 2232-2238, 2015.

NEGREIROS, A. M. P. et al. Identification and pathogenicity of Macrophomina species collected from weeds in melon fields in Northeastern Brazil. Journal of Phytopathology, 167: 326–337, 2019.

PALACIOS, S. et al. Impact of water potential on growth and germination of Fusarium solani soilborne pathogen of peanut. Brazilian Journal of Microbiology, 45: 1105-1112, 2014.

POUDEL, B. et al. Hidden diversity of Macrophomina associated with broadacre and horticultural crops in Australia. European Journal of Plant Pathology, 161: 1-23, 2021.

R CORE TEAM. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Disponível em: <https://www.R-project.org/Google Scholar>. Acesso em: 17 jan. 2022.

SALES JÚNIOR, R. et al. Pathogenicity of Macrophomina species collected from weeds in cowpea. Revista Caatinga, 33: 395-401, 2020.

SARR, M. P. et al. Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. Phytopathologia Mediterranea, 53: 250-268, 2014.

TONIN, R. F. B. et al. In vitro mycelial sensitivity of Macrophomina phaseolina to fungicides. Pesquisa Agropecuaria Tropical, 43: 460-466, 2013.

ZHAN, J.; MCDONALD, B. A. Experimental measures of pathogen competition and relative fitness. Annual Review of Phytopathology, 51: 131-153, 2013.

ZHAO, L. et al. Macrophomina vaccinii sp. nov. causing blueberry stem blight in China. MycoKeys, 55: 1-14, 2019.

Downloads

Published

12-07-2022

Issue

Section

Agronomy