AGRONOMIC CHARACTERIZATION OF SWEET POTATO GENOTYPES OBTAINED THROUGH CROSSBREEDING

Authors

  • Darllan Junior Luiz Santos Ferreira de Oliveira Postgraduate Program in Agronomy (Genetics and Plant Breeding), Universidade Estadual Paulista, Jaboticabal, SP https://orcid.org/0000-0002-0930-7709
  • Maria Eduarda Facioli Otoboni Department of Plant Science, Food Technology and Socio-Economics, Universidade Estadual Paulista, Ilha Solteira, SP https://orcid.org/0000-0002-7288-0508
  • Bruno Ettore Pavan Department of Plant Science, Food Technology and Socio-Economics, Universidade Estadual Paulista, Ilha Solteira, SP https://orcid.org/0000-0002-6487-5135
  • Adalton Mazetti Fernandes Center for Tropical Roots and Starches, Universidade Estadual Paulista, Botucatu, SP https://orcid.org/0000-0002-6745-0175
  • Pablo Forlan Vargas Faculty of Agricultural Sciences of Vale do Ribeira, Universidade Estadual Paulista, Registro, SP https://orcid.org/0000-0002-5718-6403

DOI:

https://doi.org/10.1590/1983-21252022v35n411rc

Keywords:

Ipomoea batatas L. Genetic enhancement. Productivity.

Abstract

The average national sweet potato yield of Brazil falls below the productive potential of the crop because of the cultivation of local and unimproved varieties. To improve this, more productive cultivars must be adopted along with adequate culture treatments. This study was conducted between January and May 2019 in Selvíria, Mato Grosso do Sul, Brazil, to characterize sweet potato genotypes obtained through crossbreeding. The experimental design consisted of randomized blocks containing 264 genotypes, the control (‘Beauregard’), and two replicates. Plant harvesting began 127 d after planting. After harvesting, the roots were washed and dried in a covered area ready for evaluation. The total, commercial, and non-commercial yield; total, commercial, and non-commercial root number; root dry matter content; and dry matter productivity were evaluated. The genotypes CERAT16-20, CERAT31-1, and CERAT21-2 are promising in terms of root production for household consumption because of their high productivity of commercial roots. In contrast, genotypes CERAT16-20, CERAT31-1, CERAT25-17, CERAT25-12, CERAT21-2, CERAT29-26, CERAT34-4, CERAT31-11, and CERAT24-8 are promising for industry because of the high production of dry mass per hectare. The main components, total number of commercial roots, production of non-commercial roots, mass of commercial roots, total production of dry mass of roots, mass of roots, and total production of roots have a low contribution to the discrimination of the genotypes; therefore, their analysis can be discarded in future studies, under the same soil and climate conditions, thus reducing workload, expense, and time.

Downloads

Download data is not yet available.

References

AMARO, B. G. et al. Desempenho de cultivares de batata-doce para rendimento e qualidade de raízes em Sergipe. Revista Brasileira de Ciências Agrárias, 14: 1-6, 2019.

ANDRADE JÚNIOR, V. C. D. et al. Características produtivas e qualitativas de ramas e raízes de batata-doce. Horticultura Brasileira, 30: 584-589, 2012.

ANDRADE JUNIOR, V. C. D. et al. Potencial quantitativo e qualitativo de genótipos batata doce. Scientia Agrarian, 19: 28-35, 2018.

ANDRADE JÚNIOR, V. C. D. et al. Selection of sweet potato clones for the region Alto Vale do Jequitinhonha. Horticultura Brasileira, 27: 389-393, 2009.

BACH, D. et al. Sweet Potato (Ipomoea batatas L.): a Versatile Raw Material for the Food Industry. Brazilian Archives of Biology and Technology, 64: e21200568, 2021.

CARMONA, P. A. O. et al. Divergência genética entre acessos de batata-doce utilizando descritores morfoagronômicos das raízes. Horticultura Brasileira, 33: 241-250, 2015.

CARVALHO, F. I. F.; LORENCETTI, C.; BENIN, G. Estimativas e implicações

da correlação no melhoramento vegetal. Pelotas, RS: UFPel, 2004, 142 p.

CRUZ, C. D. GENES: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, 35: 271-276, 2013.

DAHER, R. F.; MORAES, C. F.; CRUZ, C. D. Seleção de caracteres morfológicos em capim-elefante (Pennisetum purpureum Schum.). Revista Brasileita Zootecnia, 26: 247-259, 1997.

ELSAYED, A. Y. A. M. et al. Potencial quantitativo e qualitativo de genótipos batata-doce. Scientia Agraria, 19: 28-35, 2018.

FERREIRA, D. F. SISVAR: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37: 529-535, 2019.

GONÇALVES NETO, Á. C. et al. Correlação entre caracteres e estimação de parâmetros populacionais para batata-doce. Horticultura brasileira, 30: 713-719, 2012.

HARAHAP, E. S.; JULIANTI, E.; SINAGA, H. Utilization of orange fleshed sweet potato flour, starch and residual flour in biscuits making. In: IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE, nº. 01, 2019, Medan. Proceedings... Medan: IOP Publishing, 2020. v. 454, p. 012120.

IBGE - Instituto Brasileiro de Geografia e Estatística. SIDRA: produção agrícola municipal. 2019. Disponível em: <https://sidra.ibge.gov.br/tabela/5457#resultado>. Acesso em: 28 jul. 2019.

KOUROUMA, V. et al. Effects of cooking process on carotenoids and antioxidant activity of orange-fleshed sweet potato. LWT - Food Science and Technology, 104: 134-141, 2019.

MAPA - Ministério da Agricultura, Pecuária e Abastecimento. CULTIVARWEB: Gereciamento de informação. 2018. Disponível em: <http://sistemas.agricultura.gov.br/snpc/cultivarweb/cultivares_registradas.php>. Acesso em: 02 mai. 2018.

MONTEIRO, D. A.; PERESSIN, V. A. Batata doce e cará. In: RAIJ, B.V. et al. (Eds.). Recomendações de adubação e calagem para o Estado de São Paulo. Campinas, SP: Instituto Agronômico & Fundação – IAC, 1997. v. 2, cap. 21, p. 219-230.

OTOBONI, M. E. F. et al. Genetic parameters and gain from selection in sweet potato genotypes with high beta-carotene content. Crop Breeding and Applied Biotechnology, 20: e31632038, 2020.

PORTUGAL, J. R.; PERES, A. R.; RODRIGUES, R. A. F. Aspectos climáticos no feijoeiro. In: ARF, O. et al. (Eds.). Aspectos gerais da cultura do feijão Phaseolus vulgaris. Botucatu, SP: FEPAF, 2015. v. 1. cap. 4, p. 65-75.

RESENDE, M. D. V. D. Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16: 330-339, 2016.

RIZZOLO, J. A. et al. The potential of sweet potato biorefinery and development of alternative uses. SN Applied Sciences, 3: 1-9, 2021.

SANTOS, H. G. Sistema Brasileiro de Classificação dos Solos. Brasília, DF: EMBRAPA, 2013, 353 p.

SINGH, D. The relative importance of characters affecting genetic divergence. Indian Journal of Geneties and Plant Breeding, 41: 237-245, 1981.

SILVA, G. O. D. et al. Performance of root yield traits in sweet potato cultivars. Revista Ceres, 62: 379-383, 2015.

SILVA, J. B. C.; LOPES, C. A.; MAGALHÃES, J. S. Batata-doce: Ipomoea batatas. 1. ed. Brasília, DF: EMBRAPA-CNPH, 2008. 18 p. (EMBRAPA-CNPH. Sistema de produção, 6).

VARGAS, P. F. et al. Agronomic characterization of sweet potato accessions. Comunicata Scientiae, 8: 116-125, 2016.

VIEIRA, A. D. et al. Agronomic evaluation of clones of sweet potato with potential for ethanol production. Applied Research & Agrotechnology, 8: 69-74, 2015.

VIZZOTTO, M. et al. Mineral composition of sweet potato genotypes with coloured pulps and their consumption adequacy for risk groups. Brazilian Journal of Food Technology, 21: 1-8, 2018.

WANG, X. et al. Improving the production efficiency of sweet potato starch using a newly designed sedimentation tank during starch sedimentation process. Journal of Food Processing and Preservation, 44: e14811, 2020.

Downloads

Published

20-09-2022

Issue

Section

Agronomy