Relação entre índices espectrais e parâmetros de qualidade da forrageira tifton 85

Autores

  • Jhiorranni Freitas Souza Engineering Department, Technology Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil https://orcid.org/0009-0001-6295-9415
  • Anderson Gomide Costa Engineering Department, Technology Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil https://orcid.org/0000-0003-0594-8514
  • João Célio Luna de Carvalho Engineering Department, Technology Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil https://orcid.org/0000-0003-1676-4577
  • Lucas Andrade dos Santos Engineering Department, Technology Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil https://orcid.org/0000-0002-4910-4324
  • Vinícius Pimentel Silva Department of Animal Nutrition and Pastures – Animal Science Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil https://orcid.org/0000-0002-5424-2094
  • Murilo Machado de Barros Engineering Department, Technology Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil https://orcid.org/0000-0003-0378-4800

DOI:

https://doi.org/10.1590/1983-21252024v3712139rc

Palavras-chave:

Cynodon spp. Pastagens. Visão computacional. Imagens digitais.

Resumo

Sistemas de visão computacional podem ser uma alternativa aos métodos tradicionais de análise de qualidade de culturas forrageiras, permitindo o monitoramento da lavoura de forma instantânea, não destrutiva, e com redução de custos. Esta pesquisa teve como objetivo avaliar parâmetros de qualidade do capim Tifton 85 (Cynodon spp.) por meio de imagens digitais, relacionando índices espectrais com parâmetros de qualidade desta forrageira. Na área experimental foram aplicados quatro níveis de adubação nitrogenada e as análises foram realizadas em diferentes épocas após o corte de uniformização (14, 28, 42 e 56 dias). Os parâmetros de qualidade avaliados foram a matéria mineral, proteína bruta e fibra em detergente neutro. A partir de imagens obtidas na região espectral do visível (RGB) e do infravermelho próximo (RGNIR), foram gerados índices espectrais. A análise de componentes principais foi aplicada para condensar as informações obtidas pelos índices espectrais em um único componente principal (PC1). Os PC1 associados aos índices espectrais foram relacionados com os parâmetros de qualidade da forrageira para cada época de corte utilizando modelos de regressão quadrática simples. As relações da matéria mineral e os índices espectrais foram variáveis ao longo das épocas. A proteína bruta e fibra em detergente neutro apresentaram as maiores relações com os índices espectrais obtidos pelas imagens RGNIR já nas épocas iniciais. Assim, embora as imagens RGB tenham apresentado resultados satisfatórios para se obter informações sobre a qualidade do Tifton 85, a utilização da banda NIR tende a aumentar a confiabilidade das relações em instantes de tempo precoces.

Downloads

Não há dados estatísticos.

Referências

AHMAD, N. et al. The effects of technological innovation on sustainable development and environmental degradation: Evidence from China. Technology in Society, 72: 102184, 2023.

ANDRADE, W. R. et al. Hay Tifton-85 grass under nitrogen doses in different days of regrowth. Acta Scientiarum Animal Sciences, 40: 37692, 2018.

DELONGUI, R.; COALHO, M. R. Avaliação das características morfogênicas sobre a produção e composição bromatológica do Capim-Tifton 85 submetido a diferentes doses de nitrogênio. Revista Terra & Cultura: Cadernos de Ensino e Pesquisa, 34: 64 -73, 2018.

DETMANN, E. et al. Métodos para análise de alimentos. 1. ed. Visconde do Rio Branco, MG: Suprema, 2012. 214 p.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Monitoramento tecnológico de cultivares de forragens no Brasil. São Carlos, SP: Embrapa Pecuária Sudeste, 2021. 34 p. (Documentos, 139.)

FAO - Food and Agriculture Organization of the United Nations. Alimentos e Agricultura no mundo: Anuário Estatístico. Roma: FAO, 2022. 382 p.

FORMAGGIO, A. R.; SANCHES, L. D. Sensoriamento remoto em agricultura. 1. ed. São Paulo, SP: Oficina do texto, 2017. 288 p.

HAMMER, O.; HARPER, D. A. T.; RYAN, P. D. PAST - Paleontological Statistics software package for education and data analysis. Palaentologia Eletrônica, 4: 1-9, 2001.

HUACCHA-CASTILLO, A. E. et al. Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L.(Rubiaceae) based on linear models. Forest Science and Technology, 19: 59-67, 2023.

KŘÍŽOVÁ, K. et al. Using a single-board computer as a low-cost instrument for SPAD value estimation through colour images and chlorophyll-related spectral indices. Ecological Informatics, 67: 101496, 2022.

KÖPPEN, W. Climatologia: con un estudio de los climas de la tierra. Fondo de Cultura Econômica. 1948, 479 p.

MAIMAITIJIANG, M. et al. Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 151: 27-41, 2019.

MANCIN, W. R. et al. The use of computer vision to classify Xaraés grass according to nutritional status in nitrogen. Revista Ciência Agronômica, 53: 20207797, 2022.

NILSSON, M. S. et al. Effect of different nitrogen fertilization rates on the spectral response of Brachiaria brizantha cv. Marandú leaves. Engenharia Agrícola, 43: e20220008, 2023.

PATZLAFF, N. L. et al. A importância do uso da dose correta na adubação nitrogenada de tifton 85. Revista Científica Rural, 22: 1-12, 2020.

PETERS, K. C. et al. Field-scale calibration of the PAR Ceptometer and FieldScout CM for real-time estimation of herbage mass and nutritive value of rotationally grazed tropical pasture. Smart Agricultural Technology, 2: 100037, 2022.

SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília, DF: Embrapa, 2018. 356 p.

SCHAEFFER, G. H. et al. Avaliação do desenvolvimento de grama tifton 85 submetida a diferentes doses e fontes de nitrogênio. Anuário Pesquisa e Extensão Unoesc São Miguel do Oeste, 6: 27735, 2021.

SENA JÚNIOR, D. G. et al. Discriminação entre estágios nutricionais na cultura do trigo com técnicas de visão artificial e medidor portátil de clorofila. Revista de Engenharia Agrícola, 28: 187-195, 2008.

SERRET, M. D. et al. Vegetation indices derived from digital images and stable carbon and nitrogen isotope signatures as indicators of date palm performance under salinity. Agricultural Water Management, 230: 105949, 2020.

SILVA, C. J. A. et al. How lamb production systems can affect the characteristics and sward structure of Tifton 85 pasture?. Small Ruminant Research, 188: 106124, 2020.

SOMAVILLA, A. et al. Chemical pattern of vegetation and topsoil of rangeland fertilized over 21 years with phosphorus sources and limestone. Soil and Tillage Research, 205: 104759, 2021.

SUNOJ, S. et al. Digital image analysis estimates of biomass, carbon, and nitrogen uptake of winter cereal cover crops. Computers and Electronics in Agriculture, 184: 106093, 2021.

SOUZA, C. D. et al. Natural Genetic Diversity of Nutritive Value Traits in the Genus Cynodon. Agronomy, 10: 1729, 2020.

TONG, X. et al. Combined use of in situ hyperspectral vegetation indices for estimating pasture biomass at peak productive period for harvest decision. Precision Agriculture, 20: 477-495, 2019.

WANG, H. et al. Regulation of Density and Fertilization on Crude Protein Synthesis in Forage Maize in a Semiarid Rain-Fed Area. Agriculture, 13: 715, 2023.

Downloads

Publicado

02-02-2024

Edição

Seção

Artigo Científico