

Artigo

Aperfeiçoamento de algoritmos de sincronização de registros oscilográficos baseados em de tensão e corrente pré-falta

Jackson Nogueira Feitosa [1], Melinda Cesianara Silva da Cruz [2]

[1] Universidade Federal Rural do Semi-árido; jacksonfeitosa16@gmail.com [2] Universidade Federal Rural do Semi-árido; melinda@ufersa.edu.br

Recebido: 10/07/2019; Aceito: 12/07/2019; Publicado: 07/10/2019.

Resumo: Algoritmos de sincronização de registros oscilográficos são ferramentas importantes para a operação de sistemas de potência, sendo capazes de determinar o ângulo de correção necessário para alimentar, por exemplo, softwares de localização de faltas em linhas de transmissão e distribuição de energia. Existem na literatura vários métodos que fazem a sincronização de registros, sendo que os métodos mais vantajosos são aqueles que independem das características elétricas da linha como resistência, indutância e capacitância, as quais podem conter erros. Este trabalho propõe realizar uma análise e sugerir melhorias na implementação de duas metodologias de sincronização de registros oscilográficos existentes na literatura, ambas baseadas em fasores de tensão e corrente pré-falta, e independentes dos parâmetros elétricos da linha. Nos testes efetuados foram utilizados fasores de tensão e corrente obtidos a partir de simulações realizadas nos softwares ATPDraw e ANAREDE.

Palavras-chave: Sincronização de registros oscilográficos; localização de faltas; linhas de transmissão; parâmetros elétricos.

1. INTRODUÇÃO

São encontrados na literatura diversos estudos sobre a localização de faltas em linhas de transmissão (LT). Diferentes técnicas e análises são utilizadas para determinar o ponto de falta, cada uma delas com suas vantagens e desvantagens. Porém, essas técnicas, em sua maioria, necessitam de mecanismos capazes de sincronizar dados de tensão e corrente dos dois terminais da linha [1].

Relata-se em [2], que diversos estudiosos admitem empregar em suas análises, dados de tensão e corrente sincronizados, previamente, por PMUs (Phasor Measurement Units). PMUs são equipamentos que medem grandezas fasoriais utilizando o sistema de GPS (Global Positioning System) necessitando de um grande sistema de comunicação, o qual possui custos elevados. Inclusive, perdas no sinal de GPS podem acarretar em uma má sincronização de registros dos dados. Dessa forma, a sincronização de dados realizada via software ainda é um instrumento importante para auxiliar na extração correta de fasores necessários para determinar o local de uma falta em uma linha de transmissão.

Grande parte dos algoritmos que realizam a sincronização de registros de falta levam em consideração as componentes transitórias da linha de transmissão, destacando-se os fundamentados pelo uso da Transformada Walvelet [3] e algoritmos que comparam, em um sinal amostrado, valores instantâneos de dois ciclos consecutivos [4]. Encontram-se na literatura ainda técnicas que utilizam fasores de tensão e corrente pré-falta, dependentes dos parâmetros elétricos da linha [5], e não dependentes desses parâmetros [1-2]. Vale salientar que os parâmetros elétricos das linhas de transmissão podem conter erros ou podem estar indisponíveis

computacionalmente, sendo relevante o uso de ferramentas que independam desses dados, uma vez que isso significa a exclusão de uma possível fonte de erros.

Este artigo apresenta uma modificação nas metodologias apresentadas em [1] e [2] para a determinação do ângulo de sincronização de registros, visto que o primeiro algoritmo apresentou falhas em algumas situações de operação do sistema e o segundo apresenta um número excedente de condições e equações para a determinação do ângulo correto de sincronização. Portanto, o novo algoritmo que vêm a ser proposto neste trabalho, resultante do aperfeiçoamento dos métodos descritos em [1] e [2], continua identificando os ângulos de sincronização em qualquer quadrante, e apresentando o benefício de operar corretamente em qualquer condição de operação do sistema elétrico com um menor número de condições a serem atendidas.

O procedimento sugerido bem como as duas metodologias analisadas, independe de parâmetros elétricos e características transitórias da linha de transmissão, pois o mesmo necessita apenas dos fasores de tensão e corrente pré-falta. Inclusive, a metodologia por depender destes dados pode ser aplicada em casos de difícil sincronização, onde existam parâmetros de linha desconhecidos ou inexatos, e registros com características transitórias atípicas [1]. Neste estudo foi realizada uma análise de desempenho da metodologia proposta com base em dados simulados no software ATPDraw (Alternative Transient Program) e no software ANAREDE (Análise de Redes Elétricas).

2. ALGORITMOS DE SINCRONIZAÇÃO DE REGISTROS DE FALTA ANALISADOS

A seguir será apresentado o equacionamento que constitui o algoritmo de sincronização de registros oscilográficos descrito em [1]. Para isso, considerar a Figura 1, que mostra o circuito equivalente de sequência positiva de uma linha de transmissão no instante pré-falta.

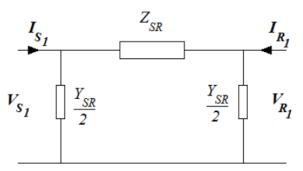


FIGURA 1. Circuito equivalente de sequência positiva de uma LT no instante pré-falta. [1]

Na Figura 1, os termos Z_{SR} e Y_{SR} representam, respectivamente, a impedância série e admitância *shunt* de sequência positiva da LT. Os termos V_{S_1} , I_{S_1} , V_{R_1} , I_{R_1} , representam, nesta ordem, os fasores de tensão e corrente pré-falta nos terminais S e R, como também o índice 1 diz respeito à sequência positiva da linha de transmissão.

Da análise da Figura 1, obtém-se a Equação (1).

$$I_{S_1} + I_{R_1} e^{j\delta} = \frac{Y_{SR}}{2} (V_{S_1} + V_{R_1} e^{j\delta})$$
 (1)

Sendo δ o ângulo sincronização entre os dois terminais descritos.

A Equação 1 é complexa e pode ser desmembrada em duas equações reais, conforme mostrado nas Equações 2 e 3.

$$I_{S_{1}}cos(\theta_{I_{S_{1}}}) + I_{R_{1}}cos(\theta_{I_{R_{1}}}) = \frac{-b_{shunt}}{2}(V_{S_{1}}sen(\theta_{V_{S_{1}}}) + V_{R_{1}}sen(\theta_{V_{R_{1}}} + \delta))$$
 (2)

$$I_{S_{1}} sen(\theta_{I_{S_{1}}}) + I_{R_{1}} sen(\theta_{I_{R_{1}}}) = \frac{-b_{shunt}}{2} (V_{S_{1}} cos(\theta_{V_{S_{1}}}) + V_{R_{1}} cos(\theta_{V_{R_{1}}} + \delta))$$
(3)

Adotando:

$$a=I_{S_1}\cos\left(\theta_{I_{S_1}}\right) \tag{4}$$

$$b=I_{S_1}sen(\theta_{I_{S_1}}) \tag{5}$$

$$c=V_{S_1}sen(\theta_{V_{S_1}}) \tag{6}$$

$$d=V_{S_1}cos(\theta_{V_{S_1}}) \tag{7}$$

As Equações 2 e 3 podem ser reescritas conforme as Equações 8 e 9.

$$a + I_{R_1} \cos(\theta_{I_{R_1}} + \delta) = \frac{-b_{shunt}}{2} (c + V_{R_1} \sin(\theta_{V_{R_1}} + \delta))$$
 (8)

$$b + I_{R_1} \cos(\theta_{I_{R_1}} + \delta) = \frac{b_{\text{shunt}}}{2} (d + V_{R_1} \cos(\theta_{V_{R_1}} + \delta))$$
(9)

Agregando as Equações 8 e 9, obtém-se a Equação 10, que por sua vez gera a Equação 11 que depende somente de uma incógnita δ .

$$\frac{a^{+} I_{R_{1}} \cos(\theta_{I_{R_{1}}} + \delta) = \frac{-b_{shunt}}{2} (c^{+} V_{R_{1}} \sin(\theta_{V_{R_{1}}} + \delta))}{b^{+} I_{R_{1}} \cos(\theta_{I_{R_{1}}} + \delta) = \frac{-b_{shunt}}{2} (d^{+} V_{R_{1}} \cos(\theta_{V_{R_{1}}} + \delta))}$$

$$(10)$$

$$A = (x_1 + x_2 + x_3 + x_4) \cos(\delta) - (-y_1 + y_2 - y_3 + y_4) \sin(\delta)$$
(11)

Na Equação 11:

$$A = ad + bc + V_{R_1} I_{R_1} cos(\theta_{V_{R_1}} - \theta_{I_{R_1}})$$
(12)

$$x_1 = -aV_{R_1}\cos\left(\theta_{V_{R_1}}\right); \ y_1 = aV_{R_1}\sin\left(\theta_{V_{R_1}}\right)$$
(13)

$$x_2 = -bV_{R_1} sen(\theta_{V_{R_1}}); y_2 = bV_{R_1} cos(\theta_{V_{R_1}})$$
 (14)

$$x_3 = -dI_{R_1} \cos(\theta_{I_{R_1}}) ; y_3 = dI_{R_1} \sin(\theta_{I_{R_1}})$$
 (15)

$$x_4 = -cI_{R_1} sen(\theta_{I_{R_1}}); y_3 = cI_{R_1} cos(\theta_{I_{R_1}})$$
 (16)

Fazendo $x=x_1+x_2+x_3+x_4$ e $y=-y_1+y_2-y_3+y_4$ obtém-se a Equação 17.

$$A = x \cos(\delta) - y \sin(\delta) \tag{17}$$

A partir da Equação 17 é possível representar a relação ente A, x e y por meio do triângulo retângulo, mostrado na Figura 2.

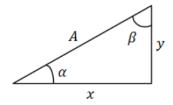


FIGURA 2. Relação geométrica ente A, y e x. [1]

A partir da análise conjunta da Equação 17 e da Figura 2, tem-se que:

$$\frac{A}{\sqrt{(x^2+y^2)}} = \operatorname{sen}(\beta)\cos(\delta) - \operatorname{sen}(\delta)\cos(\beta)$$
(18)

Dessa forma,

$$\frac{A}{\sqrt{(x^2+y^2)}} = \operatorname{sen}(\beta - \delta) \tag{19}$$

A partir da Equação 19, pode-se determinar o ângulo de sincronização δ , conforme a Equação 20.

$$\delta = \operatorname{sen}^{-1} \left(\frac{x}{\sqrt{(x^2 + y^2)}} \right) - \operatorname{sen}^{-1} \left(\frac{A}{\sqrt{(x^2 + y^2)}} \right)$$
 (20)

Considerando,

$$\beta = \operatorname{sen}^{-1} \left(\frac{x}{\sqrt{(x^2 + y^2)}} \right) \tag{21}$$

$$\Phi = \operatorname{sen}^{-1}\left(\frac{A}{\sqrt{(x^2 + y^2)}}\right) \tag{22}$$

Assim,

$$\delta = \beta - \Phi$$
 (23)

Em [1] para determinar o valor do ângulo δ no quadrante correto foi realizada uma análise sobre o sinal de y, o que resultou no algoritmo a seguir.

```
Algoritmo:

se\ (y<0)

\delta=180^{\circ}\text{-}\beta\text{-}\Phi

sen\~ao

\delta=\beta\text{-}\Phi

fim
```

Para alguns casos de operação do sistema elétrico o algoritmo proposto em [1] expressou um ângulo de sincronização incorreto. Assim, [2] propôs uma nova metodologia, onde para se determinar o ângulo correto de sincronização é necessário considerar o módulo dos fasores de corrente em ambos os terminais, como mostrado a seguir.

```
Algoritmo: se\ (x>0\ e\ y>0) se\ I_{R_1}<\ I_{S_1} \delta=\beta_1-\Phi fim se\ I_{R_1}>\ I_{S_1} \delta=\beta_1-180^\circ+\Phi
```

```
fim
fim
se(x>0 \ e \ y<0)
   se\ I_{R_1} <\ I_{S_1}
            \delta=180°-\beta_1-Φ
      fim
   se I_{R_1} > I_{S_1}
            \delta = \Phi - \beta_1
      fim
fim
se (x < 0 e y > 0)
   se I_{R_1} < I_{S_1}
            \delta = -\beta_1 - \Phi
   se\ I_{R_1} >\ I_{S_1}
            \delta = -\beta_1 - 180^{\circ} + \Phi
fim
se (x < 0 e y < 0)
  se I_{R_1} < I_{S_1} \delta = 180^{\circ} - \Phi + \beta_1
     fim
   se\ I_{R_1} >\ I_{S_1}
            \delta = \Phi + \beta_1
      fim
fim
```

Vale salientar que $\,\beta_1\,$ no algoritmo acima é definido conforme a Equação 24.

$$\beta_1 = \operatorname{sen}^{-1} \left(\frac{|x|}{\sqrt{(x^2 + y^2)}} \right) \tag{24}$$

O algoritmo apresentado em [2] mostrou-se eficiente casos típicos de operação do sistema elétrico, determinando o ângulo de sincronização correto. Porém, ele possui um número elevado de equações e condições impostas para o sinal de *x* que não existiam na metodologia descrita em [1].

Testes realizados no algoritmo proposto em [1] levaram ao novo algoritmo de sincronização proposto neste trabalho, que será apresentado na próxima seção. O algoritmo proposto é capaz de determinar o valor correto do ângulo de sincronização, para qualquer condição de operação do sistema, sem necessitar do conhecimento do sinal da variável x. Basicamente, conseguiu-se eliminar as limitações do algoritmo descrito em [1] apenas admitindo as condições do módulo de corrente descritas em [2].

Ressalta-se que em todas as metodologias de sincronização citadas neste trabalho, utiliza-se a Transformada Discreta de Fourier para a obtenção dos fasores de tensão e corrente pré-falta.

3. DEDUÇÃO DO ALGORITMO PROPOSTO

Uma análise no algoritmo proposto em [1] foi efetuada para a dedução das equações e condições a serem utilizadas neste trabalho. Realizadas as simulações no ATPDraw e no ANAREDE, para determinadas situações de operação do sistema elétrico, foi analisado os valores absolutos das correntes I_{R_1} e I_{S_1} , como também os sinais dos parâmetros x e y, e os ângulos β e Φ . Para isso foram escolhidos ângulos de sincronização de 120° a -120°. As Tabelas 1, 2 e 3 apresentam estes parâmetros para simulação de uma LT de 230 kV considerando as situações de 0,95 pu, 1pu e 1,05 pu no terminal V_R . As Tabelas 4 e 5 expressam os mesmos parâmetros para uma LT real de 230 kV e 500 kV, simulada no ANAREDE.

TABELA 1. Parâmetros e valores analisados para V_R igual a 0,95 pu. (Autoria própria)

			Tensã	ĭo 0,95 p	и		
Ângulo de			Par	râmetros			Ângulo de
Anguio ae sincronização β real (graus) (graus)		Ф (graus)	x	у	$I_{R_1}(A)$	$I_{S_1}(A)$	sincronização calculado (graus)
120	- 66,2545	6,5293	-	+	296,5176	285,0606	-72,79
90	- 83,7455	6,5293	-	-	296,5176	285,0606	257,21
60	53,7455	6,5293	-	-	296,5176	285,0606	227,21
30	23,7475	6,5293	-	-	296,5176	285,0606	197,21
0	6,2545	6,5293	+	-	296,5176	285,0606	167,21
-30	36,2545	6,5293	+	-	296,5176	285,0606	137,21
-60	66,2545	6,5293	+	-	296,5176	285,0606	107,21
-90	83,7455	6,5293	+	+	296,5176	285,0606	77,21
-120	53,7455	6,5293	+	+	296,5176	285,0606	47,21

TABELA 2. Parâmetros e valores analisados para V_R igual a 1 pu. (Autoria própria)

			Tens	ão 1 pu			
Ângulo de		Ângulo de					
sincronização	β (graus)	Ф (graus)	х	у	$I_{R_1}(A)$	$I_{S_1}(A)$	sincronização calculado (graus)
120	56,0214	4,1682	+	-	277,1477	295,8820	119,81
90	86,0214	4,1682	+	-	277,1477	295,8820	89,81
60	63,9786	4,1682	+	+	277,1477	295,8820	59,81
30	33,9786	4,1682	+	+	277,1477	295,8820	29,81
0	3,9786	4,1682	+	+	277,1477	295,8820	-0,19
-30	-26,0414	4,1682	-	+	277,1477	295,8820	-30,19
-60	-56,0214	4,1682	-	+	277,1477	295,8820	-60,19
-90	-86,214	4,1682	-	+	277,1477	295,8820	-90,19
-120	-63,9786	4,1682	-	-	277,1477	295,8820	239,81

TABELA 3. Parâmetros e valores analisados para V_R igual a 1,05 pu. (Autoria própria)

			Tensão	1,05 ри			
â		_ Ângulo de					
Ângulo de sincronização real (graus)	β (graus)	Φ (graus)	x	у	$I_{R_1}(A)$	$I_{S_1}(A)$	sincronização calculado (graus)
120	58,3499	1,7228	+	-	279,8393	327,5798	119,95
90	88,3499	1,7228	+	-	279,8393	327,5798	89,95
60	61,6501	1,7228	+	+	279,8393	327,5798	59,95
30	31,6501	1,7228	+	+	279,8393	327,5798	29,95
0	1,6501	1,7228	+	+	279,8393	327,5798	0,045
-30	-28,3499	1,7228	-	+	279,8393	327,5798	-30,05
-60	-58,3499	1,7228	-	+	279,8393	327,5798	-60,05
-90	-88,3499	1,7228	-	+	279,8393	327,5798	-90,05
-120	-61,6501	1,7228	-	-	279,8393	327,5798	239,95

Assim percebeu-se que os casos onde o código proposto em [1] funciona quando os valores de I_{S_1} foram maiores que os de I_{R_1} , porém isso não ocorre em casos contrários. A partir da análise dos dados, é possível concluir que isso ocorreu devido o sinal do ângulo β , para cada ângulo de sincronização, se inverter quando o valor de I_{S_1} é menor que os de I_{R_1} . Dessa forma, é necessário analisar, além do sinal de y, também a grandeza dos valores absolutos de corrente pré-falta em ambos os terminais, como relatado em [2].

Diante disso, para a determinação do novo código foram preservadas as equações utilizadas pela metodologia proposta em [1], com o acréscimo de duas equações contendo as condições dos valores absolutos de corrente pré-falta em ambos os terminais.

Realizou-se esta mesma análise para as LTs de 230 e 500 kV, simuladas no *software* ANAREDE, onde notou-se que o padrão visto nos casos anteriores, se repete. Observa-se isso nas Tabelas 4 e 5.

TABELA 4. Parâmetros e valores analisados para LT real de 230 kV. (Autoria própria)

			Tensão 2	230kV						
Ângulo de		Parâmetros								
sincronização real (graus)	β (graus)	Ф (graus)	x	у	I_{R_1} (pu)	$I_{S_1} \\ (pu)$	sincronização calculado (graus)			
120	59,9198	-0,0494	+	-	0,2500	0,2700	120,04			
90	89,9198	-0,0494	+	-	0,2500	0,2700	90,04			
60	60,0802	-0,0494	+	+	0,2500	0,2700	60,04			
30	30,0802	-0,0494	+	+	0,2500	0,2700	30,04			
0	0,0802	-0,0494	+	+	0,2500	0,2700	0,04			
-30	-29,9198	-0,0494	-	+	0,2500	0,2700	-29,96			
-60	-59,9198	-0,0494	-	+	0,2500	0,2700	-59,96			
-90	-89,9198	-0,0494	-	+	0,2500	0,2700	-89,96			
-120	-60,0802	-0,0494	-	-	0,2500	0,2700	240,04			

TABELA 5. Parâmetros e valores	analisa	dos	s para LT re	eal de 500 kV	. (Autoria própria)
		~	5001 17		

			Tensão 5	00kV			
Ângulo de			Parâm	etros			Ângulo de
sincronização real (graus)	β (graus)	Ф (graus)	$x y x_1$	sincronização calculado (graus)			
120	-60,1998	0,0357	-	+	1,8000	1,3000	-60,24
90	-89,8002	0,0357	-	-	1,8000	1,3000	269,76
60	-59,8002	0,0357	-	-	1,8000	1,3000	239,76
30	-29,8002	0,0357	-	-	1,8000	1,3000	209,76
0	0,1998	0,0357	+	-	1,8000	1,3000	179,76
-30	30,1998	0,0357	+	-	1,8000	1,3000	149,76
-60	60,1998	0,0357	+	-	1,8000	1,3000	119,76
-90	89,8002	0,0357	+	+	1,8000	1,3000	89,76
-120	59,8002	0,0357	+	+	1,8000	1,3000	59,76

A partir da análise destes parâmetros, nestas situações de operação do sistema elétrico, elaborou-se o algoritmo proposto neste trabalho, mostrado abaixo.

```
Algoritmo proposto:
se(y>0)
  se I_{R_1} < I_{S_1}
         \delta = \beta - \Phi
     fim
  se I_{R_1} > I_{S_1}
         \delta = -180^{\circ} + \beta + \Phi
     fim
fim
se(y<0)
  se I_{R_1} < I_{S_1}
          \delta = (180^{\circ} - \beta) - \Phi
    fim
  se I_{R_1} > I_{S_1}
          \delta = -\beta + \Phi
     fim
fim
```

4. SISTEMA ANALISADO

Para a análise de desempenho do algoritmo proposto, foram realizadas simulações no *software* ATPDraw, para sistemas elétricos fictícios e no *software* ANAREDE para sistemas reais.

A Figura 3 ilustra o sistema elétrico modelado no ATPDraw para os níveis de tensão de 230 e 500 kV. A linha de transmissão 2 (LT2), possui 180 km de comprimento para a tensão de 230 kV e 250 km para 500 kV, sendo em seus terminais onde são coletados os fasores de tensão e corrente. As linhas de transmissão 1 e 3 (LT1 e LT3) tem 20 km de comprimento nos dois níveis de tensão. Estas simulações foram realizadas considerando

linhas de transmissão transpostas, utilizando a modelagem de parâmetros distribuídos. Os parâmetros de sequência positiva e zero das linhas são mostrados nas Tabelas 6 e 7.

FIGURA 3. Representação unifilar da LT. [2]

TABELA 6. Parâmetros de sequência positiva e zero da linha de 230 kV. (Autoria própria)

	Tensão 230 kV							
Sequência	$R\left(\Omega/km\right)$	L(mH/km)	$C(\mu F/km)$					
Positiva	0,09127	1,376	0,00847					
Zero	0,44016	4,1538	0,00610					

TABELA 7. Parâmetros de sequência positiva e zero da linha de 500 kV. (Autoria própria)

	Tensão 500 kV								
Sequência	$R(\Omega/km)$	L(mH/km)	$C(\mu F/km)$						
Positiva	0,0221	0,852	0,01346						
Zero	0,3777	3,7767	0,00858						

Para cada nível de tensão simulado no ATPDraw, foram testadas três situações de operação do sistema elétrico como pode ser visto na Tabela 8. Foi considerado em todos os casos a fase de V_S igual a 0° e V_R igual a -10° . Em todas as simulações foram utilizadas uma taxa de 256 amostras por ciclo.

TABELA 8. Situações analisadas do sistema elétrico. (Autoria própria)

	Situações de operaç	ção do sistema elétrico	
Parâmetro		Tensão (pu)	
V_S	1	1	1
V_R	0,95	1	1,05

No *software* ANAREDE simulou-se sistemas elétricos reais para 230 e 500 kV. Para 230 kV foi simulada a linha de transmissão Natal II (5241) — Natal III (5245) com 11,55 km de comprimento. Já para o nível de tensão de 500 kV foi simulada a linha de Transmissão Luiz Gonzaga (5050) — Milagres (5408) com 231,2 km de comprimento. Na Tabela 9 são mostrados os parâmetros de sequência positiva para as linhas de transmissão de 230 e 500 kV.

TABELA 9. Parâmetros de sequência positiva – LTs simuladas no ANAREDE. (Autoria própria)

Parâmetros sequência positiva								
$R(\Omega/km)$	L(mH/km)	$C(\mu F/km)$						
0,0504	0,935	0,00866						
0,0238	0,746	0,016						
	$\frac{R (\Omega/km)}{0,0504}$	R (Ω/km) L (mH/km) 0,0504 0,935						

5. RESULTADOS

Com base nas simulações realizadas nos *softwares* ATPDraw e ANAREDE, este tópico expõe os resultados avaliativos do algoritmo de sincronização proposto. Entretanto, os valores de tensão oriundos desses *softwares* são sincronizados automaticamente por eles, sendo necessário à realização de uma dessincronização artificial.

Para uma melhor avaliação do algoritmo de sincronização apontado, foram inseridos erros de sincronização nos fasores de tensão e corrente nos terminais R, iguais aos utilizados em [2] para uma melhor comparação dos dados.

Na Tabela 10 são expostos os ângulos de sincronização calculados pela metodologia relatada neste artigo, como também pelos algoritmos demonstrados em [1] e [2]. Isto para as linhas de transmissão de 230 e 500 kV simuladas no ATPDraw, para a condição de tensão de 0,95 pu no terminal R.

TABELA 10. Ângulos calculados para situação de operação de 0,95 pu do sistema, para LTs de 230 e 500 kV (Autoria própria)

	K V (Autor	ia propria)						
Ângulo de sincronização calculado (graus)								
Algoritmo proposto		Algoritmo pro	oposto em	Algoritmo proposto em [2]				
230 kV	500 kV	230 kV	500 kV	230 kV	500 kV			
-239,72	-239,85	-72,79	-62,77	-239,73	-239,85			
90,27	90,15	257,21	267,23	90,27	90,15			
60,27	60,15	227,21	237,23	60,27	60,15			
30,27	30,15	197,21	207,23	30,27	30,15			
0,27	0,15	167,21	177,23	0,27	0,15			
-29,73	-29,85	137,21	147,23	-29,73	-29,85			
-59,73	-59,85	107,21	117,23	-60,73	-59,85			
-89,73	-89,85	77,21	87,23	-89,73	-89,85			
-119,73	-119,85	47,21	57,23	-119,73	-119,85			
	230 kV -239,72 90,27 60,27 30,27 0,27 -29,73 -59,73 -89,73	Ângulo d Algoritmo proposto 230 kV 500 kV -239,72 -239,85 90,27 90,15 60,27 60,15 30,27 30,15 0,27 0,15 -29,73 -29,85 -59,73 -59,85 -89,73 -89,85	Algoritmo proposto [1] 230 kV 500 kV 230 kV -239,72 -239,85 -72,79 90,27 90,15 257,21 60,27 60,15 227,21 30,27 30,15 197,21 0,27 0,15 167,21 -29,73 -29,85 137,21 -59,73 -59,85 107,21	Ângulo de sincronização calculado (Algoritmo proposto em [1] 230 kV 500 kV 230 kV 500 kV -239,72 -239,85 -72,79 -62,77 90,27 90,15 257,21 267,23 60,27 60,15 227,21 237,23 30,27 30,15 197,21 207,23 0,27 0,15 167,21 177,23 -29,73 -29,85 137,21 147,23 -59,73 -59,85 107,21 117,23 -89,73 -89,85 77,21 87,23	Ângulo de sincronização calculado (graus) Algoritmo proposto em [1] Algoritmo proposto em [2] 230 kV 500 kV 230 kV 500 kV 230 kV -239,72 -239,85 -72,79 -62,77 -239,73 90,27 90,15 257,21 267,23 90,27 60,27 60,15 227,21 237,23 60,27 30,27 30,15 197,21 207,23 30,27 0,27 0,15 167,21 177,23 0,27 -29,73 -29,85 137,21 147,23 -29,73 -59,73 -59,85 107,21 117,23 -60,73 -89,73 -89,85 77,21 87,23 -89,73			

Nota-se que o algoritmo mostrado em [1] apresentou valores incorretos para ambos os níveis de tensão. Para o algoritmo deste estudo, foram encontrados valores corretos de ângulos de sincronização, estes bem parecidos com os encontrados pela metodologia realizada em [2].

Os ângulos de sincronização calculados não são exatos devido às margens de erro decorrentes das aproximações numéricas realizadas pelo algoritmo. Contudo, esta margem de erro é bem pequena, sendo que para o algoritmo proposto ela é de 0,27° para a tensão de 230 kV e de 0,15° para a tensão de 500 kV.

Ainda utilizando os dados das simulações realizadas no ATPDraw, as Tabelas 11 e 12 trazem os ângulos de sincronização calculados para os níveis de 1 pu e 1,05 pu no terminal R.

TABELA 11. Ângulos calculados para situação de operação de 1 pu do sistema, para LTs de 230 e 500 kV (Autoria própria)

_		Ângulo de	e sincronização	calculado (gr	aus)	
Ângulo de sincronização real (graus)	Algoritmo proposto		Algoritmo p [1	^	Algoritmo proposto em [2]	
	230 kV	500 kV	230 kV	500 kV	230 kV	500 kV
120	119,81	119,50	119,81	119,50	119,81	119,50
90	89,81	89,50	89,81	89,50	89,81	89,50
60	59,81	59,50	59,81	60,50	59,81	60,50
30	29,81	29,50	29,81	29,50	29,81	29,50
0	-0,19	-0,50	-0,19	0,50	-0,19	0,50
-30	-30,19	-30,50	-30,19	-30,50	-30,19	-30,50
-60	-60,19	-60,50	-60,19	-60,50	-60,19	-60,50
-90	-90,19	-90,50	-90,19	-90,50	-90,19	-90,50
-120	239,81	239,50	239,81	239,50	239,81	239,50

TABELA 12. Ângulos calculados para situação de operação de 1,05 pu do sistema, para LTs de 230 e 500 kV (Autoria própria)

Ângulo de sincronização real (graus) —	Ângulo de sincronização calculado (graus)								
	Algoritmo proposto		Algoritmo proposto em [1]		Algoritmo proposto em [2]				
	230 kV	500 kV	230 kV	500 kV	230 kV	500 kV			
120	119,93	119,90	119,95	119,90	119,95	119,90			
90	89,93	89,90	89,95	89,90	89,95	89,90			
60	59,93	59,90	59,95	59,90	59,95	59,90			
30	29,93	29,90	29,95	29,90	29,95	29,90			
0	-0,07	-0,10	0,045	0,10	0,045	0,10			
-30	-30,07	-30,10	-30,05	-30,10	-30,05	-30,10			
-60	-60,07	-60,10	-60,05	-60,10	-60,05	-60,10			
-90	-90,07	-90,10	-90,05	-90,10	-90,05	-90,10			
-120	239,93	239,90	239,95	239,90	239,95	239,90			

Para estas condições, o algoritmo proposto neste trabalho, como também os colocados em [1] e em [2] apresentaram valores de ângulos de sincronização aproximados. Para a condição de 1 pu, foram encontrados erros absolutos de 0,19° para a tensão de 230 kV e de 0,5° para 500 kV. Já o erro absoluto encontrado para a condição de 1,05 pu foi de 0,07° para a tensão de 230 kV e de 0,1° para a tensão de 500 kV.

Na Tabela 13 podem-se observar os valores dos ângulos de sincronização calculados pelo algoritmo desenvolvido nesse estudo, e também em [1] e [2], para os casos de sistemas reais simulados no ANAREDE com linhas de transmissão de 230 e 500 kV.

TABELA 13. Ângulos calculados para sistemas reais simulados no ANAREDE, para LTs de 230 e 500 kV (Autoria própria)

Ângulo de sincronização real (graus) —	Ângulo de sincronização calculado (graus)								
	Algoritmo proposto		Algoritmo proposto em [1]		Algoritmo proposto em [2]				
	230 kV	500 kV	230 kV	500 kV	230 kV	500 kV			
120	120,13	119,84	120,04	-60,24	120,04	-240,17			
90	90,13	89,85	90,04	269,76	90,04	89,83			
60	60,13	59,85	60,04	239,76	60,04	59,83			
30	30,13	29,85	30,04	209,76	30,04	29,83			
0	0,13	-0,16	0,04	179,76	0,04	0,17			
-30	-29,87	-30,16	-29,96	149,76	-29,96	-30,17			
-60	-59,87	-60,16	-59,96	119,76	-59,96	-60,17			
-90	-89,87	269,84	-89,96	89,76	-89,96	-90,17			
-120	240,13	239,84	240,04	59,76	240,04	-120,17			

É notório que para a tensão de 230 kV, todos os algoritmos sugeridos apresentaram ângulos de sincronização corretos, cada um com sua margem de erro respectiva. Todavia, para tensão de 500 kV, o código proposto em [1] apresentou valores imprecisos, enquanto que o código aprimorado neste trabalho e o desenvolvido por [2] obtiveram valores de ângulos de sincronização mais precisos. A metodologia proposta nesse artigo apontou erro absoluto de apenas 0.13° para a tensão de 230 kV e de 0.16° para tensão de 500 kV.

A partir do estudo realizado neste trabalho foi possível obter um novo equacionamento para a sincronização de registros, sendo uma versão aperfeiçoada das metodologias propostas em [1] e [2]. Ou seja, conseguiu-se eliminar as limitações do algoritmo proposto em [1], fundamentando-se no uso das condições das correntes terminais, proposta em [2]. Com isso, obteve-se uma eficiente ferramenta de sincronização que funciona com um número reduzido de equações, para qualquer situação do sistema elétrico. Além disso, preserva a característica de ser independente dos parâmetros elétricos da linha, sendo dependente unicamente dos fasores de tensão e corrente pré-falta.

REFERÊNCIAS

- [1] CRUZ, Melinda Cesianara Silva da; OLIVEIRA, José Tavares de; MEDEIROS JUNIOR, Manoel Firmino de. Sincronização de Registros Oscilográficos em Linhas de Transmissão com Parâmetros Elétricos Desconhecidos. In: SIMPÓSIO BRASILEIRO DE SISTEMAS ELÉTRICOS, 6., 2016, Natal. Anais... . Natal: Simpósio Brasileiro de Sistemas Elétricos, 2016, p. 1 4.
- [2] MONTEIRO, Roana D. S. et al. Um novo algoritmo para sincronização de Registros Oscilográficos em Linhas de Transmissão com Parâmetros Elétricos Desconhecidos. XXII Congresso Brasileiro de Automática, João Pessoa, 2018. p. 1 7.
- [3] CRUZ, M. C. S. da, Almeida, M. A. D., Oliveira, J. T., Cândido, C. K. S. S., Leitão, J. J. A. L., Medeiros Jr, M. F. (2010). Localização de Faltas em Linhas de Transmissão de Múltiplos Terminais a Partir de Registros Oscilográficos Sincronizados Via Transformada Wavelet. In: IEEE/PES Transmission & Distribution Conference and Exposition Latin America.
- [4] COURY, Denis Vinicius; OLESKOVICZ, Mário; GIOVANINI, Renan. Proteção Digital de Sistemas Elétricos de Potência: dos relés eletromecânicos aos microprocessados inteligentes. São Carlos-sp: Eesc-usp, 2007. 378 p.
- [5] CRUZ, Melinda Cesianara Souza et al. Metodologia para Sincronização de Registros de Falta baseada em Equações de Circuito Equivalente de Linhas de Transmissão. Ieee/ias International Conference On Industry Applications, Fortaleza, v. 10, n. 10, p.120-126, fev. 2012
- [6] Y. Liao e N. Kang, "Fault-Location Algorithms Without utilizing Line Parameters Based on the Distributed Parameter Line Model", IEEE Trans. Power Deliv., vol. 24, no. 2, p. 579-584, 2009.