Cultivo fertirrigado de mini melancia submetida à níveis de salinidade e aplicação foliar de silício

Autores

DOI:

https://doi.org/10.1590/1983-21252023v36n221rc

Palavras-chave:

Citrullus lanatus. Ambiente protegido. Estresse salino. Elemento benéfico.

Resumo

A aplicação de silício (Si) representa uma das alternativas que podem ser utilizadas para mitigar os efeitos deletérios às plantas pela salinidade em cultivo fertirrigado. Objetivou-se avaliar o efeito de diferentes níveis de salinidade da água, associado ao uso de silicato de sódio sobre os parâmetros produtivos e os teores de nutrientes na folha e no caule da mini melancia em ambiente protegido. Para condução do experimento adotou-se delineamento em blocos casualizados, em esquema fatorial 6 x 2, com 4 repetições, sendo seis níveis de salinidade da água de irrigação (1,05; 2,12; 3,26; 4,41; 5,91 e 7,32 dS m-1) e dois tipos de aplicações de silício: sem silício e aplicação em solução via foliar. Foram avaliados: a altura das plantas, diâmetro do caule, número de folhas, peso da matéria fresca e seca de folhas e caule; variáveis biométricas e teor de sólidos solúveis totais nos frutos; e teor de nutrientes nas folhas e caule. O uso do silício associado a fertirrigação com diferentes níveis de salinidade proporcionaram resposta positiva para espessura de casca, ºBrix, massa fresca e seca de folhas e, acúmulo de silício nas folhas e caule. A salinidade isolada proporcionou aumento para peso de polpa, ºBrix dos frutos e teor de potássio no caule e, incrementou o teor de manganês e inibiu teor de zinco nas folhas. Houve interação significativa para o teor de manganês no caule, com resposta positiva na ausência de silício foliar e negativa com aplicação foliar de silício sob diferentes níveis de salinidade.

 

Downloads

Os dados de download ainda não estão disponíveis.

Referências

ABE, J. U. N. Silicon Deposition in Leaf Trichomes of Cucurbitaceae Horticultural Plants: A Short Report. American Journal of Plant Sciences, 10: 486-490, 2019.

AZAD, N. et al. Corrigendum to developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements. Agricultural Water Management, 208: 344–356, 2018.

BARRETO, R. F. et al. Accompanying ions of ammonium sources and nitrate: ammonium ratios in tomato plants. Acta Agriculturae Scandinavica, Section B - Soil and Plant Science, 181: 1-6, 2018.

BEZERRA, F. M. L. et al. Aspectos produtivos da melancieira sob irrigação com déficit e diferentes coberturas utilizando o modelo isareg. Revista Caatinga, 30: 437-446, 2017.

COSTAN, A. et al. Interactive effects of salinity and silicon application on Solanum lycopersicum growth, physiology and shelf-life of fruit produced hydroponically. Journal of the Science of Food and Agriculture, 100: 732-743, 2020.

DUARTE, H. H. F.; SOUZA, E. R. Soil water potentials and Capsicum annuum L. under salinity. Revista Brasileira de Ciencia do Solo, 40: 1-11, 2016.

FÁTIMA, R. T. et al. Adubação silicatada como atenuante do estresse hídrico no crescimento e trocas gasosas do alface. Revista Engenharia na Agricultura, 27: 170-178, 2019.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35: 1039-1042, 2011.

INMET - Instituto Nacional de Meteorologia. Estação meteorológica A326 de Bom Jesus, PI. 2019. Disponível em: http://www.inmet.gov.br/sonabra/pg_dspDadosCodigo_sim.php?QTMyNg. Acesso em: 19 Jun. 2020.

ISLAM, W. et al. Silicon-mediated plant defense against pathogens and insect pests. Pesticide Biochemistry and Physiology, 168: 1-21, 2020.

MA, J. F.; TAKAHASHI, E. The effect of silicic acid on rice in a P deficient soil. Plant Soil, 126: 121-125, 1990.

MA, J. F. Role of Silicon in Enhancing the Resistance of Plants to Biotic and Abiotic Stresses. Soil Science and Plant Nutrition, 50: 11-18, 2004.

MANTOVANI, C.; PRADO, R. M.; PIVETTA, K. F. L. Silicon foliar application on nutrition and growth of Phalaenopsis and Dendrobium orchids. Scientia Horticulturae, 241: 83-92, 2018.

MEDEIROS, R. D.; ALVES, A. B. Informações técnicas para o cultivo de melancia em Roraima. Boa Vista, RR: Embrapa, 2016. 48 p.

MELO FILHO, J. S. et al. Effect of preharvest application of silicon and saline water on postharvest quality of beet (Beta vulgaris L.). Journal of Experimental Agriculture International, 32: 1-9, 2019.

MORAES, C. A. G. Hidroponia: como cultivar tomates em sistema NFT (técnica de fluxo laminar de nutrientes). 1. ed. Jundiaí, SP: DISK, 1997. 141 p.

NASCIMENTO, C. W. A. et al. Influence of silicon fertilization on nutrient accumulation, yield and fruit quality of melon grown in northeastern Brazil. Silicon, 12: 937-943, 2019.

ONODERA, M. et al. Regulation of root-to-leaf Na and Cl transport and its association with photosynthetic activity in salt-tolerant soybean genotypes. Journal Plant Production Science, 22: 262-274, 2019.

RAJENDRAN, M.; IRENE, A. Efficient nutrient management through fertigation. In: GOYAL, M. R.; ALADAKATTI, B. K. (Eds). Engineering interventions in sustainable trickle irrigation: water requirements, uniformity, fertigation, and crop performance. Waretown, NJ: Apple Academic Press, 2018. v. 8, p. 101-117.

REYNOLDS, W. D. et al. Solute dynamics and the Ontario nitrogen index: II. Nitrate leaching. Canadian Journal of Soil Science, 96: 122-135, 2016.

RIOS, J. J. et al. Silicon-mediated improvement in plant salinity tolerance: the role of aquaporins. Frontiers in Plant Science, 8: 1-11, 2017.

SANTOS, L. J. D. S. S. et al. Efeito da salinidade na produção de mudas de pimentão. Brazilian Journal of Development, 6: 29354-29363, 2020.

SHARMA, P. N.; KUMAR, P.; TEWARI, R. K. Early signs of oxidative stress in wheat plants subjected to zinc deficiency. Journal of Plant Nutrition, 27: 451-463, 2004.

SIDDIQUI, H. et al. 24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. South African Journal of Botany, 118: 120-128, 2018.

SILVA JÚNIOR, E. G. et al. Vegetative development and content of calcium, potassium, and sodium in watermelon under salinity stress on organic substrates. Pesquisa Agropecuária Brasileira, 52: 1149-1157, 2017.

SOLEIMANNEJAD, Z.; ABDOLZADEH, A.; SADEGHIPOUR, H. R. Beneficial effects of silicon application in alleviating salinity stress in halophytic Puccinellia distans plants. Silicon, 11: 1001-1010, 2019.

SOUSA, A. B. O. et al. Production and quality of mini watermelon cv. Smile irrigated with saline water. Revista Brasileira de Engenharia Agrícola e Ambiental, 20: 897-902, 2016.

SOUSA, A. E. C. et al. Teores de nutrientes foliares e respostas fisiológicas em pinhão manso submetido a estresse salino e adubação fosfatada. Revista Caatinga, 25: 144-152, 2012.

TORRES, F. E. et al. Interação genótipo x ambiente em genótipos de feijão-caupi semiprostrado via modelos mistos. Bragantia, 74: 255-260, 2015.

VACULÍKOVÁ, M. et al. Influence of silicon on maize roots exposed to antimony e growth and antioxidative response. Plant Physiological and Biochemistry, 83: 279-284, 2014.

YAGHUBI, K. et al. Potassium silicate improves salinity resistant and affects fruit quality in two strawberry cultivars grown under salt stress. Communications in Soil Science and Plant Analysis, 50: 1439-1451, 2019.

WANG, H. et al. Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber. Scientia Horticulturae, 243: 357-366, 2019.

ZUSHI, K.; MATSUZOE, N. Using of chlorophyll, a fluorescence OJIP transient for sensing salt stress in the leaves and fruits of tomato. Scientia Horticulturae, 219: 216-221, 2017.

Downloads

Publicado

28-02-2023

Edição

Seção

Engenharia Agrícola