Investigating the Use of JML Contracts

Alysson F. Milanez
Department of Engineering and Technology

Igor N. S. Ataide
Department of Computing Systems

Tiago L. Massoni
Department of Computing Systems

Federal Rural University of the Semi-Arid Federal University of Campina Grande Federal University of Campina Grande

(UFERSA)
Pau dos Ferros, Brazil
alysson.milanez @ufersa.edu.br

Abstract—Design by Contract (DBC) is a methodology from
formal methods research that aims the construction of quality
software. With DBC the contracts become assertions that can be
checked at runtime, fostering reliability for developers. In this
work, we investigate the use of JML (Java Modeling Language)
contracts by means of seven open-source projects and checked
whether the contract used has some relationship with the kind
of nonconformance that occurs in each project. For the projects
considered, the most common contract types were precondition
and postcondition. This result suggests developers apparently
prefer to write pre- and postcondition clauses in comparison
with invariants. Concerning the relationship between number of
contract clauses and number of detected nonconformances, we
found a moderate negative correlation; indicating that contracts
with more clauses do not imply more nonconformances. This
result may indicate developers who write bigger contracts tend
to follow those contracts more closely.

Palavras-chaves—contract-based programs, JML, nonconfor-
mances.

I. INTRODUCTION

In the context of contract-based programs [1], it is interest-
ing to understand how developers use the kinds of contracts
available, such as preconditions, postconditions and invariants.
This is important because those contracts enable the checking
for semantic issues in a straightforward way since the require-
ments are closer to the developer in a language more accurate
than natural language; so, violations to the requirements can
be discovered at runtime as discussed by Milanez [2].

Furthermore, internal problems of a system module are
simple to find out due to the use of preconditions and invariants
for representing the expected behavior of each part of the
module. In this way, unexpected behaviors are caught at
runtime [2].

There are some studies that have tried to investigate the
usage of contracts, as Chalin [3] which examined in languages
with built-in support for DBC if practitioners tend to write
more contracts or Estler et al. [4] that addresses practical
questions of the usage of contracts.

Chalin study results indicate that programmers using Eiffel
(the only active language with built-in support for DBC) tend
to write assertions in a proportion that is higher than for other
languages. Estler et al. found a significant use of contracts
more than 33% and those contracts are stable over time;
furthermore, there is no strong preference for certain kind of

(UFCG)
Campina Grande, Brazil
igor.ataide @ccc.ufcg.edu.br

(UFCG)
Campina Grande, Brazil
massoni@dsc.ufcg.edu.br

contract: however, preconditions tend to be larger than post-
conditions.

Those previous works did not consider the relationship
between the kind of contract developers use and the noncon-
formances that can be detected.

In this paper, we propose a qualitative and quantitative
analysis of the use of contracts and we perform a case
study with seven JML (JML is a DBC-enabling for Java)
open source projects for analyzing the relationship between
nonconformances detected and contracts use.

In all the seven projects considered, the most common
contract types were precondition and postcondition. This re-
sult suggests developers apparently prefer to write pre- and
postcondition clauses in comparison with invariants.

We also investigate the relationship between number of
contract clauses and number of detected nonconformances and
found a moderate negative correlation; indicating that contracts
with more clauses do not imply more nonconformances. This
result may indicate developers who write bigger contracts tend
to follow those contracts more closely; however, more studies
are needed for further evidence about this.

The paper is structured as follows. Section II presents the
theoretical background needed to understand this work. Next,
Section III describes the research we performed. Finally, we
summarize in Section IV the main findings of this work and
suggestions for future work.

II. BACKGROUND

This section provides the background needed to understand
the topics discussed through the current work. Section II-A
discusses the DBC methodology; then, Section II-B uses an
example for present the idea of a nonconformance between
source code and contracts. Finally, Section II-C presents the
metrics used in the study performed.

A. Design by Contract

Design by Contract [1] (DBC) is a methodology from
formal methods research [5] that aims the construction of
quality software. DBC is a direct descendant from Hoare’s
triples [6] — P {Q} R which means there is a required
connection between a precondition (P), a program (Q) and
a description of its execution result (R): “If the assertion P is

ISSN 2526-7574, Anais do II ECOP - Pocket, UFERSA, Pau dos Ferros/RN, v.5, 2021
https:/periodicos.ufersa.edu.br/index.php/ecop

true before initiation of a program Q, then the assertion R will
be true on its completion.”

DBC is based on the establishment of contracts between
software modules: clients (those modules using or depending
on functionality) and suppliers (those providing some func-
tionality) [1], [7]. In this context, clients must satisfy precon-
ditions before calling a supplier; suppliers in their turn, have to
provide some guarantees over their results (postconditions) [7].
Both clients and suppliers may have contracts with respect
to their fields — e.g. establishing the range of valid values —
(invariants) [7].

As discussed by Milanez [2], DBC enables developers to
detect design errors during the software development phase,
since the design decisions are written in the form of contracts
into the source code, thus tools can be used for checking
whether the design decisions are being fulfilled. Furthermore,
inconsistencies related to the misunderstanding of the require-
ments can be detected earlier than in scenarios without the use
of contracts.

Since DBC contracts become assertions, they can be
checked at runtime, fostering reliability for developers. The
contracts enable the checking for semantic issues in a straight-
forward way since the requirements are closer to the devel-
oper in a language more accurate than natural language; so,
violations to the requirements can be discovered at runtime. In
addition, contracts ruling the behavior of the underlying code
provide additional data for conformance verification [2].

In the context of Java development, the Java Modeling
Language (JML) [8] is a DBC-enabling notation (and cor-
responding toolset), with contracts as comments within Java
code. As presented by Milanez [2], JML has a syntax very
similar to Java, furthermore, extends some Java expressions
(e.g. the use of quantifiers) to specify behaviors and has
some restrictions about Java constructions like: side-effects,
generic types, and Java annotations. JML mixes DBC approach
from Eiffel [9] with the specification model-based approach
from Larch family of programming languages [10], and some
elements from the calculus of refinement.

B. Nonconformances

JML method contracts are declared with keywords
requires and ensures, specifying pre- and postcondi-
tions, respectively. A class invariant clause must hold
after constructor execution, and before and after every method
call [2].

In addition, JML has a special kind of constraint: a history
constraint — constraint clause is similar to invariants,
but constraints define relationships that must hold for the
combination of each visible state and the next in the program’s
execution. An \old clause refers to pre-state of some value [2].

Class Counter (Listing 1) declares a constructor and two
methods: one for updating values and one for resetting values —
visibility is omitted, for simplicity. The invariant in Counter
enforces that field count must be in the range [0, MAX]. The
\o1d clause used in the postcondition refers to pre-state value
of count.

Listing 1. Counter class
class Counter{
final int MAX = 3;
int count;
//@ invariant 0 <= count && count <= MAX;
Counter () {
count = 1;

//@ ensures !b || (count == \old(count+1));
void updateCount(boolean b){
if (b){
count++;

}

//@ ensures count == 0;
void resetCount(){
count= 0;

In addition to the contracts from our motivating example,
JML supports history constraints, which we call constraints
for short, are related to invariants. But whereas invariants are
predicates that should hold in all visible states, history con-
straints are relationships that should hold for the combination
of each visible state and any visible state that occurs later in
the program’s execution. Constraints can therefore be used to
constrain the way that values change over time [11].

The class is not in conformance with its contracts, as it
presents one nonconformance that can only be detected with
a sequence of at least three calls to updateCount, with
parameter b = true. In Listing 2, a test case reveals this
problem.

Listing 2. A test case for Counter class
Counter ¢ = new Counter();
c.updateCount(true);
c.updateCount(true);
c.updateCount(true);

Nonconformances between contract and implementation
may be subtle to detect. Regardless of where the bug is
located (contract or code, or both); the failure may only arise
within a sequence of calls to two or more methods, called
in a particular order. Method updateCount does not have
an explicit precondition, the likely cause suggested is Weak
Precondition. This problem may be solved by adding a pre-
condition to updateCount, relating the method parameter
with the current value of count.

C. Contracts Complexity

For quantifying contract clauses, we follow Estler et al. [4]
approach, in which the total number of contract clauses (#CC)
is a proxy for contract complexity. In addition, for quantifying
code lines (LOC) — we consider only real source code lines,
blank lines, closing brackets and comments are not considered.
The CCo metric (Equation 1) is the ratio between #CC and
LOC. The implementation for counting contract clauses and
lines of code is available online.'

#CC(x)

CCo(x) = TOC(z) (D

Uhttps://github.com/igornatanael/util/tree/master/ContractCounter

ISSN 2526-7574, Anais do II ECOP - Pocket, UFERSA, Pau dos Ferros/RN, v.5, 2021
https:/periodicos.ufersa.edu.br/index.php/ecop

Concerning the motivating example (Section II-B), CCo
metric is calculated as follows: there are 10 code lines, so LOC
= 10; there are two invariant clauses and two postcondition
clauses, therefore, #CC = 4; thus, CCo = 4/10, in other words,
CCo metric = 0.4. We have 4 contract clauses and 10 lines of
code.

III. METHODOLOGY

This section presents the study performed. Section III-A
shows the research question that motivated the present work;
then, the experimental design is presented on Section III-B;
next, Section III-C describes the main findings and Sec-
tion III-D summarizes the discussions; finally, Section III-E
presents the limitations of the present work.

A. Research Question

In order to investigate contracts practice in Java/JML
projects and discover relations between contracts and detected
nonconformances, we formulate the following research ques-
tion:

RQ. Are there any relationship between contracts complexity,
as measured by CCo metric (Equation 1) and the number of
detected nonconformances?

B. Experimental Design

To answer this question, we select seven open source
projects whose nonconformances where manually mapped
during previous study [2]. The JML projects (that we will
call experimental units henceforth) are: Bank a representation
of a real bank is presented in the KeY approach book [12],
Bomber [13] a mobile game, HealthCard [14] an appli-
cation that manages medical appointments into smart cards,
JAccounting an accounting system, also a case study from
the ajml compiler project [13].

Mondex [15] is a translation from an original Z specifi-
cation, developed in the Verified Software Repository? con-
text, Samples is a set composed by example programs
for educational purposes, written by JML specialists, and
TransactedMemory [16] is a specific feature of the Javac-
ard API. All seven projects are available online?.

For those projects, we collected two metrics: #CC - the
number of contract clauses and LOC - lines of code. Those
metrics are used for establishing the CCo metric (defined in
Section II-C, Equation 1).

We also used the nonconformances (NCs) detected by
JmIOKk2 tool [2], [17]. These seven selected projects totalize
103 nonconformances.

C. Results

We summarize in Table I all information collected for each
experimental unit. With respect to lines of code (LOC), values
vary from 655 to 6,648; the CCo values vary from 0.02 to

0.48. When grouped by contract type, Igfg vary from 0.161

Zhttp://vsr.sourceforge.net/mondex.htm
3https://bit.ly/2XerhpM

to 0.634; £25t from 0.176 to 0.645; 2% from 0.000 to 0.315;

oo CC > CC
and =5%* from 0.000 to 0.033.
Considering the nonconformance ratio - #évcc 5 - values vary

from 0.010 to 0.134. Precondition is the contract type more
common at four out of seven projects. Invariant problems are
more common at six out of seven projects.

D. Discussion

Concerning contract type, the most common contract
clauses were precondition and post-condition: in all evaluated
projects those kind of contracts were the most common. For
some systems (as HealthCard and TransactedMemory)

the ratio of precondition clauses (2 TC?) is almost three times

the ratio of postcondition clauses (C“‘C“

In addition, for four projects, precondition clauses are the
majority of the written contracts; as a conclusion, the use of
precondition clauses in the studied systems outperform the
use of postcondition clauses, which corroborates with Estler
et al. [4]: there is no preference for certain contract type,
however, preconditions, tend to have more clauses than post-
conditions.

This result suggests developers tend to write more pre-
and postcondition clauses in comparison with invariants. Since
invariants are related to fields of the classes, it is an expected
finding: the amount of invariant clauses be smaller than the
amount of pre- or postcondition clauses. This can be related
to the fact usually, Java classes tend to have more methods
than fields.

CCo metric or the ratio between each contract type and
contract clauses are not enough for arguing about contracts or
even code quality. For example, HealthCard has precondi-
tion clauses ratio of 0.634, CCo of 0.47 (the second highest
value obtained in this study) but at the same time, JmlOk2 tool
was able to detect 41 nonconformances in this experimental
unit. On the other hand, Mondex has precondition ratio of
0.161, CCo of 0.27 but the tool was able to detect only two
nonconformances in the project.

Aiming to discover relations between contract clauses and
number of nonconformances, we statistically compared if the
ratio of CC with LOC had relation with the ratio of NCs
with CC. We found a moderate negative correlation (Pearson’s
correlation coefficient p = -0.40), so we cannot argue that
contracts with more clauses imply more nonconformances,
in contrast with our initial presumption that the number of
nonconformances would be positively related to the contracts
complexity. Answering our question: we found a moderate
negative correlation.

Our result indicate developers who write bigger contracts
tend to follow those contracts more closely; however, more
studies are needed for more evidence about this.

E. Threats to Validity

This study has some limitations; next, we describe some
threats to its validity. A conclusion threat is related to CCo,
based on the ratio between the number of contract clauses and
LOC, which may not be representative of contract complexity.

ISSN 2526-7574, Anais do II ECOP - Pocket, UFERSA, Pau dos Ferros/RN, v.5, 2021
https:/periodicos.ufersa.edu.br/index.php/ecop

Table 1
FOR EACH SYSTEM, WE PRESENT ITS SIZE MEASURED BY MEANS OF LINES OF CODE (LOC), THE RESULTS OF THE RATIO BETWEEN EACH CONTRACT
TYPE AND CONTRACT CLAUSES, THE VALUE OF CCo, THE NUMBER OF NONCONFORMANCES DETECTED (#NCS), THE NONCONFORMANCE RATIO

(#NCs/CC), THE MOST COMMON CONTRACT AND NONCONFORMANCE TYPE.

Experimental Unit LOC g’g Pc?csf Icné’ CC?gS CCo | #NCs #év g 2 | Contract type NC type
Bank 792 0.524 | 0.341 | 0.135 | 0.000 | 0.16 3 0.024 Pre Post and Inv
Bomber 6,258 | 0.355 | 0.645 | 0.000 | 0.000 | 0.02 5 0.041 Post Post and Inv
HealthCard 2,156 | 0.634 | 0.231 | 0.102 | 0.033 | 0.47 41 0.040 Pre Inv
JAccounting 6,048 | 0.505 | 0.485 | 0.010 | 0.000 | 0.03 26 0.134 Pre Inv
Mondex 655 0.161 | 0.598 | 0.224 | 0.017 | 0.27 2 0.011 Post Inv
Samples 3,855 | 0372 | 0497 | 0.129 | 0.001 0.48 18 0.010 Post Post
TransactedMemory 1,779 | 0.505 | 0.176 | 0.315 | 0.003 0.17 8 0.027 Pre Inv

We followed this approach for its simplicity, as it has been
used by related research [4].

With respect to external validity, even though we diversified
our choice of contract-based systems, varying in code size
and contract clause count, generalizing the obtained results is
almost impossible.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we investigated the practice use of contracts
in seven JML open source programs. In almost all projects,
the most common contract clauses were precondition and
postcondition, in contrast with the results of Estler et al. [4]
who found no difference between the kind of contracts used.

This result suggests developers apparently prefer to write
pre- and postcondition clauses in comparison with invariants.
Since invariants are used, for example, for establishing the
range of valid values, it is expected that the amount of invariant
clauses be smaller than the amount of pre- or postcondition
clauses. Usually, Java programs tend to have more methods
than fields.

Furthermore, when investigating the relationship between
contract complexity and number of nonconformances detected,
we found a moderate negative correlation (p = -0.40); so, we
cannot argue that contracts with more clauses imply more
nonconformances. Our result indicate developers who write
bigger contracts tend to follow those contracts more closely;
however, more studies are needed for further evidence about
this.

As future work, we plan to extend this work for considering
more Java/JML open source projects and to others languages
(such as Eiffel [18], Code Contracts [19], and Spec# [20]),
and to define more metrics on contracts. We also intend to
create a model for guiding developers in the process of writing
contracts.

REFERENCES

[1] B. Meyer, “Design by Contract,” in Advances in Object-Oriented Soft-
ware Engineering. Prentice Hall, 1991, pp. 1-50.

[2] A. E. Milanez, “Fostering Design By Contract by Exploiting the Re-
lationship between Code Commentary and Contracts,” Ph.D. thesis,
Federal University of Campina Grande, 2018.

[3] P. Chalin, “Are practitioners writing contracts?” in Rigorous Develop-
ment of Complex Fault-Tolerant Systems, M. Butler, C. Jones, A. Ro-
manovsky, and E. Troubitsyna, Eds. Springer Berlin Heidelberg, 2006,
vol. 4157, pp. 100-113.

[4] H.-C. Estler, C. Furia, M. Nordio, M. Piccioni, and B. Meyer, “Contracts
in practice,” in Formal Methods, C. Jones, P. Pihlajasaari, and J. Sun,
Eds. Springer International Publishing, 2014, vol. 8442, pp. 230-246.

[5] P. Gibbins, “What Are Formal Methods?” Information and Software
Technology, vol. 30, no. 3, pp. 131-137, 1988.

[6] C. Hoare, “An Axiomatic Basis for Computer Programming,” Commu-
nications of the ACM, vol. 12, no. 10, pp. 576-580, 1969.

[71 B. Meyer, “Applying "Design by Contract”,” Computer, vol. 25, no. 10,
pp. 40-51, 1992.

[8] G. Leavens, A. L. Baker, and C. Ruby, “Preliminary Design of JML:
A Behavioral Interface Specification Language for Java,” SIGSOFT
Software Engineering Notes, vol. 31, no. 3, pp. 1-38, 2006.

[9]1 B. Meyer, Eiffel: the language. Prentice-Hall, Inc., 1992.

[10] J. Guttag and J. Horning, Larch: Languages and Tools for Formal
Specification. Springer-Verlag New York, Inc., 1993.

[11] G. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Miiller,
J. Kiniry, P. Chalin, D. Zimmerman, and W. Dietl, “JML Reference
Manual,” 2013.

[12] B. Beckert, R. Hihnle, and P. H. Schmitt, Verification of Object-oriented
Software: The KeY Approach. Springer-Verlag, 2007.

[13] H. Rebélo, R. Lima, M. Cornélio, G. Leavens, A. Mota, and C. Oliveira,
“Optimizing JML Features Compilation in ajmlc Using Aspect-Oriented
Refactorings,” in Brazilian Symposium on Programming Languages,
2009, pp. 117-130.

[14] R. Rodrigues, “JML-Based Formal Development of a Java Card Ap-
plication for Managing Medical Appointments,” Master’s dissertation,
Universidade da Madeira, 2009.

[15] P. Schmitt and I. Tonin, “Verifying the Mondex Case Study,” in
International Conference on Software Engineering and Formal Methods,
2007, pp. 47-58.

[16] E. Poll, P. Hartel, and E. Jong, “A Java Reference Model of Transacted
Memory for Smart Cards,” in In Smart Card Research and Advanced
Application Conference. USENIX Association, 2002, pp. 75-86.

[17] A. Milanez, D. Sousa, T. Massoni, and R. Gheyi, “JMLOK2: A tool for
detecting and categorizing nonconformances,” in CBSoft (Tools session),
2014.

[18] B. Meyer, Object-Oriented Software Construction. Prentice Hall, 1997.

[19] M. Barnett, M. Fahndrich, and F. Logozzo, “Embedded Contract Lan-
guages,” in Symposium on Applied Computing. ACM, 2010, pp. 2103—
2110.

[20] M. Barnett, M. Fihndrich, R. Leino, P. Miiller, W. Schulte, and
H. Venter, “Specification and verification: The Spec# Experience,”
Communications of the ACM, vol. 54, no. 6, pp. 81-91, 2011.

ISSN 2526-7574, Anais do II ECOP - Pocket, UFERSA, Pau dos Ferros/RN, v.5, 2021
https:/periodicos.ufersa.edu.br/index.php/ecop

