Trocas gasosas, eficiência fotoquímica e crescimento de quiabeiro hidropônico sob estresse salino e ácido salicílico

Autores

  • Allysson Jonhnny Torres Mendonça Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil https://orcid.org/0000-0002-0446-6970
  • Geovani Soares de Lima Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil https://orcid.org/0000-0001-9960-1858
  • Lauriane Almeida dos Anjos Soares Academic Unit of Agricultural Sciences, Universidade Federal de Campina Grande, Pombal, PB, Brazil https://orcid.org/0000-0002-7689-9628
  • Valeska Karoline Nunes Oliveira de Sá Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil https://orcid.org/0000-0003-1497-6883
  • Saulo Soares da Silva Post Graduate Program in Agroindustrial Systems, Universidade Federal de Campina Grande, Pombal, PB, Brazil https://orcid.org/0000-0002-1049-6519
  • Rafaela Aparecida Frazão Torres Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil https://orcid.org/0000-0001-5266-5811
  • Jean Télvio Andrade Ferreira Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil https://orcid.org/0000-0002-4629-9429
  • Hans Raj Gheyi Post Graduate Program in Agricultural Engineering, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil https://orcid.org/0000-0002-1066-0315

DOI:

https://doi.org/10.1590/1983-21252024v3712143rc

Palavras-chave:

Abelmoschus esculentus L. Moench. Salinidade. Cultivo sem solo. Osmorregulação.

Resumo

O quiabeiro (Abelmoschus esculentus L.) é um arbusto que pertencente à família Malvaceae, que se destaca pela rusticidade e adaptação às condições edafoclimáticas, sendo cultivado por pequenos agricultores, especialmente no semiárido do Nordeste do Brasil. Neste contexto, objetivou-se com este estudo avaliar o efeito da aplicação foliar de ácido salicílico como atenuante do estresse salino nas trocas gasosas foliares, eficiência fotoquímica e crescimento de quiabeiro cv. Canindé em sistema hidropônico. O trabalho foi desenvolvido em sistema hidropônico tipo Técnica de Fluxo de Nutrientes - NFT em casa de vegetação, em Pombal – PB, durante o período de janeiro a março de 2022, utilizando-se o delineamento inteiramente casualizado, em esquema parcelas subdivididas, sendo os quatro níveis de condutividade elétrica da solução nutritiva - CEsn (3,0; 5,0; 7,0 e 9,0 dS m-1), considerados as parcelas e as quatro concentrações de ácido salicílico - AS (0; 1,2; 2,4 e 3,6 mM) as subparcelas com três repetições e duas plantas por parcela. O aumento dos níveis da solução nutritiva a partir de 3,0 dS m-1 inibiu as trocas gasosas foliares, a eficiência fotoquímica e o crescimento do quiabeiro cv. Canindé em cultivo hidropônico, aos 34 dias após o transplantio. A aplicação foliar nas concentrações de 2,2 e 1,5 mM de ácido salicílico proporcionaram aumento na condutância estomática e transpiração, respectivamente. O ácido salicílico na concentração de 1,9 mM associado à solução nutritiva salina de 9,0 dS m-1 elevou a fluorescência variável das plantas de quiabeiro cv. Canindé, aos 34 dias após o transplantio.

Downloads

Não há dados estatísticos.

Referências

CHRYSARGYRIS, A. et al. The combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plants. Journal of Hazardous Materials, 368: 584-593, 2019.

DANTAS, M. V. et al. Hydrogen peroxide and saline nutrient solution in hydroponic zucchini culture. Semina: Ciências Agrárias, 43: 1167-1186, 2022.

DIAS, A. S. et al. Gas exchanges and photochemical efficiency of West Indian cherry cultivated with saline water and potassium fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 22: 628-633, 2018.

DIAS, A. S. et al. Gas exchanges, quantum yield and photosynthetic pigments of West Indian cherry under salt stress and potassium fertilization. Revista Caatinga, 32: 429-439, 2019.

FERREIRA, D. F. SISVAR: A computer analysis system to fixed effects split-plot type designs. Revista Brasileira de Biometria, 37: 529-535, 2019.

FIDELES FILHO, J.; BELTRÃO, N. E. M.; PEREIRA, A. S. Desenvolvimento de uma régua para medidas de área foliar do algodoeiro. Revista Brasileira de Engenharia Agrícola e Ambiental, 14: 736-741, 2010.

HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil. 2. ed. Circular. Berkeley: California Agricultural Experiment Station, 1950. n. 347, 32 p.

LIANG, W. et al. Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495: 286-291, 2018.

LIMA, G. S. et al. Eficiência fotoquímica, partição de fotoassimilados e produção do algodoeiro sob estresse salino e adubação nitrogenada. Revista de Ciências Agrárias, 42: 214-225, 2019.

LIMA, G. S. et al. Gas exchanges, growth and production of okra cultivated with saline water and silicon fertilization. Semina: Ciências Agrárias, 41: 1937-1950, 2020.

LIMA, G. S. et al. Saline water irrigation and nitrogen fertilization on the cultivation of colored fiber cotton. Revista Caatinga, 31:151-160, 2018.

MODESTO, F. J. et al. Crescimento, produção e consumo hídrico do quiabeiro submetido à salinidade em condições hidropônicas. Irriga, 24: 86-97, 2019.

NAJAR, R. et al. Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems, 153: 88-97, 2019.

NOBRE, R. G. et al. Teor de óleo e produtividade da mamoneira de acordo com a adubação nitrogenada e irrigação com água salina. Pesquisa Agropecuária Brasileira, 47: 991-999, 2012.

OLIVEIRA, A. A.; PEREIRA, A. N.; ROH, K. S. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro. Saudi Journal of Biological Sciences, 21: 417-426, 2014.

OLIVEIRA, V. K. N. et al. Salicylic acid does not mitigate salt stress on the morphophysiology and production of hydroponic melon. Brazilian Journal of Biology, 82: e262664, 2022.

OLIVEIRA, V. K. N. et al. Foliar application of salicylic acid mitigates saline stress on physiology, production, and post-harvest quality of hydroponic japanese cucumber. Agriculture, 13: e395, 2023.

RICHARDS, L. A. Diagnosis and improvement of saline and alkali soils. Washington: U.S. Department of Agriculture. 1954. 160 p.

SÁ, F. V. S. et al. Water salinity, nitrogen and phosphorus on photochemical efficiency and growth of West Indian cherry. Revista Brasileira de Engenharia Agricola e Ambiental, 22: 158-163, 2018.

SAUSEN, D. et al. Cultivo fora do solo: uma alternativa para áreas marginais. Brazilian Journal of Development, 6: 14888-14903, 2020.

SILVA, A. A. R. et al. Induction of salt stress tolerance in cherry tomatoes under different salicylic acid application methods. Semina: Ciências Agrárias, 43: 1145-1166, 2022.

SILVA, A. A. R. et al. Salicylic acid as an attenuator of salt stress in soursop. Revista Caatinga, 33: 1092-1101, 2020.

SILVA, A. A. R. et al. Salicylic acid attenuates the harmful effects of salt stress on the morphophysiology of early dwarf cashew. Ciência e Agrotecnologia, 47: e015622, 2023.

SILVA, J. S. et al. Production of lettuce with brackish water in NFT hydroponic system. Semina: Ciências Agrárias, 39: 947-961, 2018.

TATAGIBA, S. D. et al. Limitações fotossintéticas em folhas de plantas de tomateiro submetidas a crescentes concentrações salinas. Engenharia na Agricultura, 22: 138-149, 2014.

VELOSO, L. L. S. A. et al. Attenuation of salt stress on the physiology and production of bell peppers by treatment with salicylic acid. Semina: Ciências Agrárias, 42: 2751-2768, 2021.

ZEGADA-LIZARAZU, W.; LUNA, D. F.; MONTI, A. Photosynthetic acclimation of sweet sorghum under progressive water stress. Industrial Crops and Products, 66: 216-219, 2015.

Downloads

Publicado

06-05-2024

Edição

Seção

Artigo Científico