Detecção do estado hídrico em híbridos de milho com imagens aéreas obtidas por aeronave remotamente pilotada
DOI:
https://doi.org/10.1590/1983-21252024v3711701rcPalavras-chave:
Drone. Cultivar. Estresse hídrico. Índice de vegetação. Sensoriamento remoto.Resumo
Objetivou-se avaliar a capacidade de índices de vegetação (IV), obtidos de imagens aéreas por aeronave remotamente pilotada (ARP), em detectar o estado hídrico de híbridos de milho submetidos a diferentes regimes hídricos, nas condições de solo e clima de Teresina, Piauí, Brasil. Avaliou-se a aplicação de cinco regimes hídricos (RHs) com base na evapotranspiração da cultura (ETc) (40%, 60%, 80%, 100% e 120% da ETc) em três híbridos de milho: BRS 3046 (híbrido triplo convencional); BRS 2022 (híbrido duplo convencional); e Status VIP3(híbrido simples transgênico). O delineamento experimental foi o de blocos ao acaso, parcelas subdivididas, sendo as parcelas os RHs e as subparcelas os híbridos, com quatro repetições. Utilizou-se uma ARP para a aquisição das imagens multiespectrais. Avaliaram-se 18 índices de vegetação, os quais foram correlacionados com medidas de condutância estomática (gs), conteúdo relativo de água na folha (CRA) e produtividade de grãos (PG). Os IVs TCARI-RE e NDVI apresentaram correlação com gs e os IVs MNGRD e GCI foram correlacionados com o CRA e, portanto, são considerados promissores na detecção do estado hídrico do milho. Os IVs NDVI e WDRVI apresentaram correlações com a PG. Os mapas de NDVI, MNGRV e WDRVI mostraram correlação espacial com as medidas de gs, CRA e PG, respectivamente em resposta aos RHs, indicando aplicação potencial na detecção do estado hídrico do milho por meio de imagens aéreas obtidas por ARPs.
Downloads
Referências
ALLEN, R. G.et al. Crop evapotranspiration: Guidelines for computing crop water requirements. Rome: FAO, 1998. 300 p. (Drainage and Irrigation Paper, 56).
ANDRADE JUNIOR, A. S. et al. Water status evaluation of maize cultivars using aerial images. Revista Caatinga, 34: 432-442, 2021.
BALLESTER, C. et al. Monitoring the effects of water stress in cotton using the green red vegetation index and red edge ratio. Remote Sensing, 11: 1-21, 2019.
BAJULA, J. et al. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrigation Science, 30: 511-522, 2012.
BENDIG, J. et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39: 79-87, 2015.
BERGAMASCHI, H.; MATZENAUER, R. O milho e o clima. Porto Alegre, RS: Emater/RS-Ascar, 2014. 84 p.
BLACKBURN, G. A. Quantifying chlorophylls and carotenoids at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66: 273-285, 1998.
BURGOS-ARTIZZU, X. P. et al. Real-time image processing for crop/weed discrimination in maize fields. Computers and Electronics in Agriculture, 75: 337-346, 2011.
DAUGHTRY, C. S. T. et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74: 229-239, 2000.
DOORENBOS, J.; KASSAM, A. H. Efeito da água no rendimento das culturas. Campina Grande, PB: UFPB, 1994. 306 p. (Estudos FAO: Irrigação e Drenagem, 33).
ELMETWALLI, A. H.; TYLER, A. N. Estimation of maize properties and differentiating moisture and nitrogen deficiency stress via ground–Based remotely sensed data. Agricultural Water Management, 242: 1-7, 2020.
ELSAYED, S.; RISCHBECK, P.; SCHMIDHALTER, U. Comparing the performance of active and passive reflectance sensors to assess the normalized relative canopy temperature and grain yield of drought stressed barley cultivars. Field Crops Research, 177: 148-160, 2015.
FERREIRA, E. B.; CAVALCANTI, P. P.; NOGUEIRA, D. A. ExpDes: an R package for ANOVA and experimental designs. Applied Mathematics, 5: 2952-2958, 2014.
GITELSON, A. A. et al. Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32: 1-4, 2005.
GITELSON, A. A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161: 165-173, 2004.
HABOUDANE, D. et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81: 416-426, 2002.
HAMUDA, E.; GLAVIN, M.; JONES, E. A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125: 184-199, 2016.
HASSAN, M. A. et al. Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. Remote Sensing, 10: 809-828, 2018.
HOYOS‐VILLEGAS, V.; FRITSCHI, F. B. Relationships among vegetation indices derived from aerial photographs and soybean growth and yield. Crop Science, 53: 2631-2642, 2013.
HOGAN, S. et al. Unmanned aerial systems for agriculture and natural resources. California Agriculture, 71: 5-14, 2017.
HUNT, E. R.; DAUGHTRY, C. S. T. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?. International Journal of Remote Sensing, 39: 5345-5376, 2018.
IHUOMA, S. O.; MADRAMOOTOO, C. A. Recent advances in crop water stress detection. Computers and Electronics in Agriculture, 141: 267-275, 2017.
INMET - Instituto Nacional de Meteorologia. Históricos de dados Meteorológicos. Disponível em: <https://portal.inmet.gov.br/dadoshistoricos>. Acesso em: 30 nov. 2020.
JONES, H. G.; VAUGHAN, R. A. Remote sensing of vegetation: principles, techniques, and applications. Oxford University Press, USA, 2010. 384 p.
LI, L. et al. Evaluating the crop water stress index and its correlation with latent heat and CO2 fluxes over winter wheat and maize in the North China plain. Agricultural Water Management, 97: 1146-1155, 2010.
MEDEIROS, M. R.; CAVALCANTI, E. P.; DUARTE, J. F. M. Classificação climática de Köppen para o estado do Piauí-Brasil. Revista Equador, 9: 82-99, 2020.
OSAKABE, Y. et al. Response of plants to water stress. Frontiers in Plant Science, 5: 81-88, 2014.
PANIGADA, C. et al. Fluorescence, PRI and canopy temperature for water stress detection in cereal crops. International Journal of Applied Earth Observation and Geoinformation, 30: 167-178, 2014.
QGIS Development Team. QGIS User Guide, Release 2.18: QGIS Project, 2016.
ROSSINI, M. et al. Discriminating irrigated and rainfed maize with diurnal fluorescence and canopy temperature airborne maps. ISPRS International Journal of Geo-Information, 4: 626-646, 2015.
SANJEREHEI, M. M. Assessment of spectral vegetation indices for estimating vegetation cover in arid and semiarid shrublands. Range Management & Agroforest, 35: 91-100, 2014.
SANTOS, H. G. et al. Brazilian Soil Classification System. 5. ed. Brasília, DF: Embrapa, 2018.
TOFFANIN, P. OpenDroneMap: The Missing Guide. 1st ed. St Petersburg, Florida: UAV4GEO, 2019. 264 p.
TUCKER, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8: 127-150, 1979.
ULLAH, S. et al. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis. Science of the Total Environment, 437: 145-152, 2012.
XINGYANG, S. et al. Stomatal limitations to photosynthesis and their critical Water conditions in different growth stages of maize under water stress. Agricultural Water Management, 241: 1-12, 2020.
WANG, S.; AZZARI, G.; LOBELL, D. B. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sensing of Environment, 222: 303-317, 2019.
ZHANG, L. et al. Evaluating the sensitivity of water stressed maize chlorophyll and structure based on UAV derived vegetation indices. Computers and Electronics in Agriculture, 185, 1-9, 2021.
ZHAO, S. et al. Estimating and validating wheat leaf water content with three MODIS spectral indexes: A case study in Ningxia Plain, China. Journal of Agricultural Science and Technology, 18: 387-398, 2016.
ZHONG, L.; HU, L.; ZHOU, H. Deep learning based multi-temporal crop classification. Remote Sensing of Environment, 221: 430-443, 2019.
Downloads
Publicado
Edição
Seção
Licença
Os Autores que publicam na Revista Caatinga concordam com os seguintes termos:
a) Os Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons do tipo atribuição CC-BY, para todo o conteúdo do periódico, exceto onde estiver identificado, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista, sem fins comerciais.
b) Os Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Os Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).