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ABSTRACT – Measures of the apparent electrical conductivity (ECa) of soil are used in many studies as 

indicators of spatial variability in physicochemical characteristics of production fields. Based on these 

measures, management zones (MZs) are delineated to improve agricultural management. However, these 

measures include outliers. The presence or incorrect identification and exclusion of outliers affect the 

variogram function and result in unreliable parameter estimates. Thus, the aim of this study was to model ECa 

data with outliers using methods based on robust approximation theory and model-based geostatistics to 

delineate MZs. Robust estimators developed by Cressie–Hawkins, Genton and MAD Dowd were tested. The 

Cressie–Hawkins semivariance estimator was selected, followed by the semivariogram cubic fit using Akaike 

information criterion (AIC). The robust kriging with an external drift plug-in was applied to fitted estimates, 

and the fuzzy k-means classifier was applied to the resulting ECa kriging map. Models with multiple MZs were 

evaluated using fuzzy k-means, and a map with two MZs was selected based on the fuzzy performance index 

(FPI), modified partition entropy (MPE) and Fukuyama–Sugeno and Xie–Beni indices. The defined MZs were 

validated based on differences between the ECa means using mixed linear models. The independent errors 

model was chosen for validation based on its AIC value. Thus, the results demonstrate that it is possible to 

delineate an MZ map without outlier exclusion, evidencing the efficacy of this methodology. 

 

Keywords: Robust statistics. Precision agriculture. Apparent soil electrical conductivity. Spatial variability. 

fuzzy k-means. 
 

 

DELINEAMENTO DE ZONAS HOMOGÊNEAS POR GEOESTATÍSTICA BASEADA EM 

MODELOS ROBUSTA À OUTLIERS 

 

RESUMO – Diversas pesquisas utilizam medidas de condutividade elétrica aparente do solo (CEa) como 

indicador da variabilidade espacial de atributos físico-químicos existentes no campo de produção. Com base 

nestas medidas, zonas de manejo (ZM) são delineadas para aperfeiçoamento da gestão agrícola. Entretanto, 

estas amostras têm apresentado presença de outliers. Todavia, a presença ou incorreta detecção e exclusão de 

outliers altera o formato do variograma, exibindo estimativas não fidedignas para os seus parâmetros. Dessa 

forma, objetivou-se nesta pesquisa, tratar dados amostrais da CEa por meio de métodos robustos à presença de 

outliers, fundamentados na teoria de aproximações robusta e na geoestatística baseada em modelos, para o 

delineamento de ZM. Assim, estimadores robustos de Cressie Hawkins, Genton‟s e MAD Dowd foram 

avaliados. Nesta avaliação, selecionou-se o estimador de semivariância de Cressie Hawkins. E na sequência, 

optou-se pelo ajuste cúbico do semivariograma via Critério de Informação de Akaike (AIC). As estimativas 

obtidas com este ajuste foram aplicadas na plug-in robusto de krigagem. E coerentemente o mapa de krigagem 

da CEa obtido foi utilizado no classificador fuzzy k-means. Com uso do fuzzy k-means, diferentes ZM foram 

avaliadas, selecionando-se o mapa com duas ZM por meio dos índices FPI, MPE, Fukuyama-Sugeno e xie 

beni. As ZM estabelecidas foram validadas quanto as suas diferenças médias relativas à CEa por meio de 

modelos lineares mistos. Nesta validação optou-se pelo modelo de erros independentes, através do AIC. E 

dessa forma, diante a exposição dos resultados alcançados, foi possível delinear o mapa de ZM sem 

necessidade de recorrer à exclusão de outliers, evidenciando o mérito da metodologia empregada.  

 

Palavras-chave: Estatística robusta. Agricultura de precisão. Condutividade elétrica aparente. Variabilidade 

espacial. Fuzzy k-means. 
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INTRODUCTION 
 

With the development of precision 

agriculture, mapping of soil heterogeneity has 

become a relevant tool in agricultural management. 

Thus, precision agriculture may be defined as a 

systematic procedure to inspect and incorporate soil 

spatial variability in field management 

(HAGHVERDI et al., 2015). Such spatial variability 

may be caused by climatic, topographical and 

biological factors (CÓRDOBA et al., 2013). 

Management of field spatial variability is 

performed through the delineation of management 

zones (MZs). MZs are field sub-regions that have 

similar needs based on soil physicochemical 

features. The delineation of these sub-regions allows 

specific input needs to be identified and thus 

decreases their usage, increasing agricultural 

sustainability (CÓRDOBA et al., 2013; BOTTEGA 

et al., 2017). 

However, field spatial variability must be 

determined to delineate MZs. Such knowledge is 

obtained by modelling the spatial characterization of 

factors that are relevant to field management. The 

apparent soil electrical conductivity (ECa) is among 

the relevant factors that must be considered 

(CÓRDOBA et al., 2016; PERALTA et al., 2015; 

HAGHVERDI et al., 2015; CÓRDOBA et al., 2013; 

SCUDIERO et al., 2013; PERALTA et al., 2013). 

The widespread use of such a feature is due to its 

ease of sampling, low cost and strong influence on 

plant growth and yield (PERALTA et al., 2013). 

Depending upon climatic conditions and other 

factors, ECa distribution can either be symmetrical 

(CÓRDOBA et al., 2013) or asymmetrical 

(SCUDIERO et al., 2013; YAO et al., 2014; 

BOTTEGA, 2014; SHAHBAZI et al., 2013). The 

latter property has a significant effect on the fit of the 

variogram theoretical model (FU et al., 2016), on 

statistical kriging cross-validation (KERRY; 

OLIVER, 2007) and on the precision of the spatial 

variability map. Therefore, asymmetry compromises 

the delineation of MZs, negatively influencing field 

management. 

Therefore, asymmetrical distributions of 

sampling data must be carefully analysed due to the 

irrefutable occurrence of outliers. Outliers are 

atypical values within a dataset (FU et al., 2016; 

CÓRDOBA et al., 2016). Several methods such as Q

-Q plot, box plot, local indicators of spatial 

association (LISA) and cross-validation can be used 

to identify outliers (FU et al., 2016). 

Once identified, outliers are excluded from 

the analysis (RAMOS et al., 2017; CÓRDOBA et al., 

2016; FU et al., 2016; PICCINI; MARCHETTI; 

FRANCAVIGLIA, 2014). Outlier exclusion favours 

the normal distribution of the data without data 

transformation (FU et al., 2016) and allows the 

correct interpolation of the spatial variability map, 

and thus the correct management decision may be 

made based on the analysis (TAYLOR; 

MCBRATNEY; WHELAN, 2007). 

However, the incorrect outlier exclusion can 

undermine statistical determinations (MARONNA; 

MARTIN; YORAI, 2006) and, consequently, 

compromise the estimates of variogram parameters, 

and, ultimately, field management decisions. In this 

context, the present study aims to delineate MZs 

without excluding outliers, using methods that are 

insensitive to outliers. Robust geostatistical methods 

will be used both to define variogram parameters and 

to interpolate the spatial variability map. 

 

 

MATERIAL AND METHODS 
 

ECa was used in this study due to the 

advantages of its use in delineating MZs, as 

described by Peralta et al. (2013). Georeferenced 

ECa data from Bottega (2014), collected from a rural 

property in the municipality of Ponta Porã in the 

state of Mato Grosso do Sul, Brazil (22°32‟09”S, 55°

43‟33”W), were used. Samples were collected in 

February 2012 from 160 locations at 50-m regular 

intervals, using a receptor GPS (model GPSMAP 62, 

brand Garmin). 

Georeferenced sample geographic coordinates 

were transformed from the World Geodetic System 

84 (WGS84) to Universal Transverse Mercator 

(UTM) zone 21 South using the “rgdal” package in 

R (BIVAND et al., 2016), followed by descriptive 

analysis of samples focusing on data asymmetry and 

outlier detection, as outliers affect the variogram 

function (OLIVER; WEBSTER, 2014). 

Values outside of the range defined as ± 3 

times the standard deviation (sd) around the mean      

( ) were defined as outliers, as described by 

Córdoba et al. (2016).  

Once outliers were identified, data were 

analysed by robust geostatistics using the “georob” 

package (PAPRITZ, 2017) in R (TEAM, 2016). This 

methodology is unique in that it is based on the 

theoretical fundaments of the robust approach 

(KÜNSCH et al., 2013;) and on geostatistics based 

on models (DIGGLE; RIBEIRO, 2007). 

Thus, bservations of ECa

sampled at positions    

were used to obtain experimental variograms for the 

following semivariance estimators: methods-of-

moments, proposed by Matheron (ISAAKS; 

SRIVASTAVA, 1989); the robust estimator, 

proposed by (CRESSIE; HAWKINS, 1980), which 

is insensitive to outliers, as opposed to Matheron‟s 

classic estimator; the robust estimator, proposed by 

Genton (GENTON, 1998); and the median absolute 

deviation (MAD) robust estimator (DOWD, 1984). 

These semivariance estimators were tested to verify 

which most satisfactorily modelled the spatial 

dependency pattern for the stationary process with 

𝑥  

𝑦𝑇 =  𝑦 𝑠1 , 𝑦 𝑠2 , … , 𝑦 𝑠𝑛   𝑠𝑖  
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the least sensitivity to outliers. 

The selected semivariance estimator provided 

the initial estimates of the semivariogram 

parameters. These initial estimates were used in the 

model proposed by Künsch et al. (2013) –

 – to predict                

at non-observed positions . In this model,   

is defined as the trend,  is the stationary 

Gaussian process of zero-mean and covariance 

matrix, , and  is the independent error with the 

squared scale parameter  (nugget effect) 

(KÜNSCH et al., 2013).  is defined as the 

covariance matrix as a function of distance h and 

 where  is the plateau and  is the 

range (KÜNSCH et al., 2013).  

The unique characteristic of this method is the 

use of robust restricted maximum likelihood 

(RREML), proposed by KÜNSCH et al. (2013), 

which maximizes the restricted Gaussian log 

likelihood, in addition to the parameters described in 

Diggle and Ribeiro (2007)  and the latent 

variable .  

Using the experimental semivariogram‟s 

initial entry values in the model, the semivariogram 

models that exhibited convergence using this robust 

methodology were evaluated. Among the evaluated 

models, the one with lowest Akaike information 

criterium (AIC) value was selected, providing the 

parameter estimates used in the kriging plug-in 

(KÜNSCH et al., 2013): 

 
 

where  is the estimated covariance matrix 

of  and  is the estimated covariance vector 

between  and After kriging was performed, 

the following descriptive statistics for kriging 

validation were obtained: mean prediction error 

(MPE) and mean square deviation ratio (MSDR) 

(OLIVER; WEBSTER, 2014). 

The resulting modelled map of the ECa 

spatial structure was processed with the fuzzy k-

means algorithm using the “e1071” package in R 

(DIMITRIADOU et al., 2008). This algorithm ranks 

the interpolated values into classes to minimize the 

sum of the squared distances within the domain of a 

defined cluster (SCUDIERO et al., 2013). This 

methodology defines a diffused element in which a 

given observed point may belong to more than one 

class, depending upon a pre-defined weighting 

exponent (SCUDIERO et al., 2013). 

Then, the weighting exponent was pre-

defined at 1.35, as described by Odeh; 

Chittleborough; McBratney (1992), and was used in 

𝑌 𝑠 = 𝑥 𝑠 𝑇𝛽 + 𝑍 𝑠 + 𝜀(𝑠) 𝑍 𝑠  
𝑠𝑖  𝑥 𝑠 𝑇𝛽 
𝑍 𝑠  

𝑅 𝜀(𝑠) 
𝜎2 

𝑅 

𝜃𝑇 =  𝜎0
2, 𝛼 , 1 𝜎0

2 𝜎2 

(𝜎2, 𝜎0
2, 𝛼) 1 

𝑧.  1 

𝑍  𝑠0 = 𝑥 𝑠0 
𝑇𝛽 + 𝛾𝜃 

𝑇 𝑠0 Γ𝜃 
−1𝑍  

Γ𝜃  
𝑍 𝛾𝜃  

𝑍 𝑍 𝑠0 .  1 

the cluster definition, with the resulting maps 

featuring 2 to 5 clusters. The following indices were 

used to define the optimal number of clusters: 

fuzziness performance index (FPI), modified 

partition entropy (MPE), Fukuyama–Sugeno (FS) 

and Xie­–Beni (Xb) (RAMOS et al., 2017; 

CÓRDOBA et al., 2016; YAO et al., 2014). The 

lowest index values were used to define the number 

of classes. The use of lowest values resulted in better 

separation among clusters and a higher similarity of 

values within each cluster (RAMOS et al., 2017; 

SONG et al., 2009). 

Once the number of clusters was identified, a 

spatial filter to smooth the continuity of zones and 

reduce the fragmentation between classes was 

applied to the respective map (LARK, 1998). 

Following the protocol of Córdoba et al. (2016), a 

median spatial filter with 9 x 9 pixels was applied to 

improve smoothing, without fragmentation. Thus, 

one pixel is defined as the median of its neighbours 

(GONZALEZ; WOODS, 2008). 

After applying the filter for the smoothing of 

the classes, MZs were validated by verifying any 

significant differences between MZ means. For that 

purpose, random samples from each MZ were 

selected and mixed linear models (MLMs) were 

defined considering the MZ as a fixed effect and 

random errors as spatially correlated. 

This configuration, also used by Córdoba et 

al. (2016), was defined using the following MLMs: 

spherical and exponential models, with and without 

the nugget effect, and the independent errors model. 

These models were also applied in the validation of 

MZs in the present study. 

Each defined model was evaluated based on 

the AIC, with the lowest value used to select the 

model. Next, the means of the MZs and their 

respective confidence intervals were reported. In the 

MZ validation process, the packages 

“nlme” (PINHEIRO et al., 2016) and 

“lsmeans” (RUSSELL, 2016) in R were used do 

define the MLMs and mean tests, respectively. 

 

 

RESULTS AND DISCUSSION 
 

Following the transformation of coordinates 

from WGS84 to UTM zone 21 South, descriptive 

statistics for the ECa dataset were obtained (Table 1. 
Descriptive statistics of apparent electrical 

conductivity (ECa) sampled from 0- to 20-cm depth 

in a rural property in the municipality of Ponta Porã, 

Mato Grosso do Sul. ). 
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Table 1. Descriptive statistics of apparent electrical conductivity (ECa) sampled from 0- to 20-cm depth in a 

rural property in the municipality of Ponta Porã, Mato Grosso do Sul, Brazil.  

Feature N1 Minimum Mean Median Maximum Sd2 CV (%)3 Cs4 Ck5 

ECa6 160 2.74 6.19 5.94 19.31 2.13 34.44 2.24 9.29 

 1 1Sample size; 2Standard deviation; 3Coefficient of variation; 4Asymmetry coefficient; 
5Coefficient of kurtosis; 6Soil apparent electrical conductivity in 2012 (mS m-1).  

The ECa dataset was comprised of 160 

samples and had an amplitude of 16.57 mS m-1, a 

34% variation around a mean of 6.19 mS m-1 and 

displayed positive asymmetry (Table 1. Descriptive 

statistics of apparent electrical conductivity (ECa) 

sampled from 0- to 20-cm depth in a rural property 

in the municipality of Ponta Porã, Mato Grosso do 

Sul. ). 

Similar CV values for ECa, ranging from 

17.61% to 44.49%, and a higher mean ECa, ranging 

from 12.79 to 27.42, were obtained by Peralta et al. 

(2013). These differences are due to different sample 

depths (0 to 90 cm), a higher sand content and lower 

clay content, which lead to higher water 

accumulation and, thus, lower ECa values 

(PERALTA et al., 2013). 

Scudiero et al. (2013) reported a similar ECa 

mean (1.14 dS m-1) and also detected positive 

asymmetry (1.05). ECa distribution asymmetry also 

has been reported in several other studies (YAO et 

al., 2014; BOTTEGA et al., 2017; SHAHBAZI et 

al., 2013; AGGELOPOOULOU et al.; 2013). 

Positive asymmetry (Table 1. Descriptive 

statistics of apparent electrical conductivity (ECa) 

sampled from 0- to 20-cm depth in a rural property 

in the municipality of Ponta Porã, Mato Grosso do 

Sul. ) had atypical values in the overall dataset 

(Figure 1). 

Such atypical values were evaluated for 

potential outliers, and three values were identified 

outside of the range  using 

the boxplot (Figure 1). The outlier positions were 

determined (Figure 2). 

 𝒙  ± 𝒔𝒅: 𝟔. 𝟏𝟗 ± 𝟐. 𝟏𝟑  

Figure 1. Histogram and boxplot of apparent electrical conductivity (ECa) distribution.  

Figure 2. Sample mesh where X denotes the positions of the outliers.  



DELINEATION OF HOMOGENEOUS ZONES BASED ON GEOSTATISTICAL MODELS ROBUST TO OUTLIERS 
 

 

D. P. BARBOSA et al. 

Rev. Caatinga, Mossoró, v. 32, n. 2, p. 472 – 481, abr. – jun., 2019 476 

Due to the depth of samples analysed for ECa 

and the specific physicochemical properties of the 

soil, Scudiero et al. (2013) and Córdoba et al. (2016) 

reported different thresholds for the detection of 

outliers,  and  , 

respectively.  

Once outliers were identified, their influence 

on the variogram function was evaluated. Thus, the 

 𝑥 ± 𝑠𝑑: 1.14 ± 0.72   𝑥 ± 𝑠𝑑: 3.8 ± 7  

semivariance estimators developed by Matheron, 

Genton, Cressie and Hawkins, and MAD Dowd were 

compared regarding the expected typical behaviour 

of an experimental semivariogram, considering ECa 

data. These semivariance estimators, except that of 

Matheron, must be used in situations related to the 

pertinence of the outliers to the dataset (OLIVER; 

WEBSTER, 2014).  

Figure 3. Experimental semivariogram for the semivariance estimators of Matheron (MM), Genton (Qn), Cressie–Hawkins 

(Ch) and Dowd (MAD) applied to the ECa sampling data.  

It is noteworthy that the outliers affect the 

semivariance function for the Matheron estimator, 

which does not display a constant plateau (Figure 3). 

However, the other semivariance estimators (Genton, 

Cressie and Hawkins, and Dowd), which are robust 

to outliers, exhibit similar behaviour regarding both 

trend and plateau stability (Figure 3). The Cressie–

Hawkins estimator was selected for the following 

analysis, as it presented the smallest kriging 

variance, mean prediction error and mean squared 

error (Table 2). 

Based on the Cressie and Hawkins 

semivariogram, the cubic model was fitted as it 

displayed the lowest AIC value (577) compared to 

the other models: Gaussian (620), geniting (690) and 

penta (705). The cubic model fitted to the 

semivariances (Figure 4) displayed a nugget effect of 

1.96, a plateau at 3.9 and a range of 630.  

Table 2. Statistical cross-validation for the semivariance estimators: Matheron (MM), Genton (Qn), Cressie–Hawkins (Ch) 

and Dowd (MAD).  

Estimators Var1 ME2 MSDR3 

MM 0.0 0.0 0.91 

Qn 0.1 0.0 0.87 

Ch 0.0 0.0 1.01 

MAD 0.1 0.0 0.88 

 1 1Kriging variance; 2Mean prediction 

error; 3Mean squared deviation ratio.  
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Figure 4. Cubic model fitted to the semivariances of the apparent electrical conductivity (ECa) data.  

Values obtained for the variogram parameter 

estimates (Figure 4) were used as entry data in the 

kriging plug-in using the package 

“georob” (PAPRITZ, 2017). With this function, the 

ECa kriging was obtained (Figure 5) as well as the 

descriptive statistics for kriging cross-validation (ME 

= 0.1 and MSDR = 1.66).  

Figure 5. Kriging plug-in data interpolation (PAPRITZ, 2017) defining the spatial variability structure of the apparent 

electrical conductivity (ECa).  

The summarized values for kriging cross-

validation support the analysis, given that the mean 

error approaches zero and the mean square error ratio 

is approximately one, which indicates unbiased 

kriging (OLIVER; WEBSTER, 2014). 

The interpolation displaying the spatial varia­

bility structure of ECa (Figure 5) was used as com­

plementary information in the fuzzy k-means algo­

rithm. Such an algorithm was used to group the inter­

polated values into zones (RODRIGUES JUNIOR et 

al., 2011). 

The number of zones to be evaluated varies 

among studies; in general, two to six zones are used 

(RAMOS et al., 2017; CÓRDOBA et al., 2016; 

HAGHVERDI et al., 2015; YAO et al., 2014). Thus, 

two to five zones were evaluated using the “cmeans” 

function and weighting exponent of 1.35 (ODEH; 

CHITTLEBOROUGH; MCBRATNEY, 1992) 

(Figure 6).  
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Figure 6. Spatial distribution with two, three, four and five management zones (MZs) within the study area, determined 

based on the fuzzy k-means algorithm.  

The optimal number of MZs is achieved when 

the FPI, MPE, FS and Xb indices (RAMOS et al., 

2017; CÓRDOBA et al., 2016; YAO et al., 2014) are 

lowest (RAMOS et al., 2017; SONG et al., 2009). In 

this study, based on these indices, the optimal 

number of MZs was two. 

Similarly, Córdoba et al. (2013), Ramos et al. 

(2017) and Yao et al. (2014) reported two MZs was 

optimal. Once the optimal number of MZs is defined, 

a validation is performed to verify the significance of 

the difference between the MZ mean values. 

MLMs were fitted to 1,000 samples randomly 

selected from each MZ and evaluated regarding their 

AIC values. In these models, MZs were considered 

as a fixed effect and errors were spatially correlated 

with exponential and spherical spatial structures, 

with and without nugget effect, and an independent 

errors model. 

The independent errors model was selected as 

it had the lowest AIC value (3,072) and it detected 

significant differences between the means from the 

two defined MZs (Figure 7).  

Figure 7. Mean apparent electrical conductivity (ECa) in the defined management zones (MZs) and confidence intervals. 

Letters „a‟ and „b‟ indicate statistically significant differences (P<0.001) between MZ means.  
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With the selection of the independent errors 

model, it is possible to also verify the non-overlap of 

the confidence interval for the means obtained for 

each of the defined MZs (Figure 7), which highlights 

the heterogeneity among the MZs. Finally, after 

validating the MZs and identifying their optimal 

number, it was possible to confirm the use of two 

MZs (Figure 8).  

Figure 8. Spatial characterization of the apparent electrical conductivity (ECa) of the management zones (MZs) determined 

based on robust geostatistics.  

The spatial distribution displayed in Figure 8 

exhibits a degree of continuity in the limits of the 

obtained MZ, which was due to the application of a 

median smoothing filter (CÓRDOBA et al., 2016), 

comprised of a 9 x 9-pixel window. In this filter, 

each pixel is defined as the median of its internal 

neighbours within each window. 

 

 

CONCLUSION 
 

The use of robust estimators of semivariance 

was suitable to the dataset studied, as it defined the 

semivariogram function in spite of asymmetry and 

outliers. Thus, the application of a robust Gaussian 

restricted log-likelihood methodology included in the 

kriging plug-in resulted in MZs that can easily be 

managed, justifying its application. The procedure 

enabled the understanding of the spatial variability of 

soil physicochemical features that correlate with 

ECa. Thus, a probable soil correction is easily 

identified, which consequently reduces agricultural 

management costs. 
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