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ABSTRACT – Demarcating soil management zones can be useful, for instance, delimiting homogeneous areas 

and selecting attributes that are generally correlated with plant productivity, but doing so involves several 

different steps. The objective of this study was to identify the chemical and physical attributes of soil and 

soybean plants that explain crop productivity, in addition to suggesting and testing a methodological procedure 

for defining soil management zones. The procedure consisted of six steps: sample collection, data filtering, 

variable selection, interpolation, grouping, and evaluation of management zones. The samples were collected in 

an experimental area of 12.5 ha cultivated with soybean during the 2013/14 crop in Dystrophic Red Latosol, in 

Mato Grosso, Brazil. A total of 117 pairs of plant and soil samples were collected. Student’s t-test was used             

(α = 0.02) to verify that the number of samples was adequate for correlation analysis. Results showed that only 

the P and Mn content in the grains explained (based on R2 values) the variation in soybean grain productivity 

the area. Based on the interpolation of these contents by ordinary kriging, the fuzzy C-means algorithm was 

used to separate them into groups by similarity. Division into two groups was the best option, which could be 

differentiated by Mann–Whitney test (P < 0.05), resulting in a map with 10 management zones.  

 

Keywords: Glycine max L.. Direct seeding. Precision agriculture. 

 

 

DEFINIÇÃO DE ZONAS DE MANEJOS A PARTIR DE ATRIBUTOS DO SOLO E 

PRODUTIVIDADE DE SOJA 

 

 

RESUMO - Zonas de manejo do solo são usadas, por exemplo, para delimitar áreas homogêneas, selecionando 

atributos que no geral correlacionam com a produtividade das plantas, mas, defini-las requer diferentes etapas. 

Objetivou-se neste trabalho identificar atributos químicos e físicos do solo e de plantas de soja que explicaram 

a produtividade de grãos da cultura e, também, sugerir e testar um procedimento metodológico para definir 

zonas de manejo do solo. O procedimento consistiu de seis etapas: coleta de amostras, filtragem dos dados, 

seleção das variáveis, interpolação, agrupamento e avaliação das zonas de manejo. As amostras foram coletadas 

em uma área experimental de 12,5 ha, cultivada com soja na safra 2013/14, em um Latossolo Vermelho 

Distrófico, em Mato Grosso, onde foram coletados 117 pares de amostras de plantas e de solo. Utilizando-se o 

teste de Student (α = 0,02), verificou-se que o número de amostras foi adequado para a análise de correlação. 

Entretanto, apenas os teores de P e Mn dos grãos explicaram (R2) a variação da produtividade de grãos de soja 

na área. Com base na interpolação destes teores por krigagem ordinária utilizou-se o algoritmo fuzzy C-means 

para separá-los em grupos por similaridade, em que a divisão em 2 grupos foi a melhor opção, que diferiram 

pelo teste de Mann-Whitney (P < 0,05), resultando em um mapa com 10 zonas de manejo.  

 

Palavras-chave: Glycine max L.. Plantio direto. Agricultura de precisão. 
 

 
 

 

 
 

 

 
 

 

 
 

 

_____________________ 
*Corresponding author 
1Received for publication in 04/30/2016; accepted in 11/28/2016. 

Paper extracted from the doctoral thesis of the first author, funded by Coordination for the Improvement of Higher Education Personnel. 
2Department of Soils and Rural Engineering, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; fabriciotomazramos@gmail.com, 

jcampelo@terra.com.br, jotace@terra.com.br. 
3Computer Institute, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; raul@ic.ufmt.br. 



DEFINING MANAGEMENT ZONES BASED ON SOIL ATTRIBUTES AND SOYBEAN PRODUCTIVITY 
 

 

F. T. RAMOS et al. 

Rev. Caatinga, Mossoró, v. 30, n. 2, p. 427 – 436, abr. – jun., 2017 428 

INTRODUCTION 
 

Farmers in the state of Mato Grosso, Brazil 

are increasingly adopting precision agriculture 

techniques, such as variable rate fertilization using 

agricultural equipment with a global positioning 

system. However, care must be taken during 

automatic defining of management zones based on 

precision agriculture software, because according to 

Yamamoto and Landim (2013), instead of 

homogenizing soil fertility, it might increase its 

spatial variability.  

Variable rate fertilization is useful to avoid 

underestimation or overestimation of limestone and 

fertilizer dosages. However, some issues might need 

attention, for example, (i) poorly performed field 

sampling could lead to errors in the interpretation of 

analysis results; therefore, no matter how 

sophisticated the laboratory analyses are, they would 

be unable to correct the shortcomings of inadequate 

data collection or sampling methods that do not 

effectively isolate the sources of variation 

(YAMAMOTO; LANDIM, 2013; FU et al., 2016); 

(ii) during geostatistical analysis, the ideal quantity 

of samples needed for routine analysis vs. the 

number judged by the farmer as economically viable 

for sending to the laboratory might differ, and 

therefore, the veracity of the georeferenced maps 

could be compromised (TEY; BRINDAL, 2012; 

YAMAMOTO; LANDIM, 2013); and (iii) even if 

the sampling is representative and judicious, there 

could be other problems related to the initial 

diagnosis of errors and methodical statistical 

processing of raw data (HAIR JR. et al., 2009; 

TAYLOR; BATES, 2013; FU et al., 2016). Thus, 

factors that can affect the quality of maps processed 

without minimum criteria with respect to statistical 

analysis and geostatistics should be kept in mind. 

Another issue concerns the costs involved in 

sampling schemes and soil and plant analyses, which 

were questioned by farmers in Mato Grosso with 

respect to their practical and economic viability. 

Defining management zones requires various steps, 

from data collection to map evaluation, based on 

which the cultivation area is divided into subareas 

that have homogeneity with respect to the evaluated 

attributes (RODRIGUES; CORÁ; FERNANDES, 

2012; ALVES et al., 2013; FARID et al., 2013; 

DALCHIAVON et al., 2013; BAZZI et al., 2015; 

SANTOS et al., 2015; SANTOS; SARAIVA, 2015). 

This allows the application of inputs at appropriate 

rates for improving the productivity of a crop 

(BREDEMEIER et al., 2013; BAGHERI et al., 2013; 

COSTA et al., 2014). However, it is common to see 

variations in sampling methods, laboratory analyses, 

statistics, and geostatistics, irrespective of their 

correlation with plant productivity (ALVES et al. 

2013; BREDEMEIER et al., 2013; 

URRETAVIZCAYA et al., 2014).  

Because of variations in the stages of analysis 

for defining management zones and considering the 

reference processes proposed by Santos and Saraiva 

(2015), it can be assumed that formalization of a 

general support model is possible, that is, a flowchart 

to assist in the definition of soil management zones. 

This flowchart is initially intended to represent the 

essential basic steps for defining management zones, 

considering only the variables controllable by the 

farmer, which relate to the productivity of the plants. 

The objective of this work was to identify chemical 

and physical attributes of soil and soybean plants that 

explain the grain productivity of the crop, and to 

suggest and test a methodological support procedure 

to define soil management zones. 

 

 

MATERIAL AND METHODS 
 

Location description 

 

This study was carried out on a farm in the 

city of Diamantino-MT, Brazil (latitude                            

14° 07′ 40′′ S, longitude 56° 58′ 39′′ W), at an 

altitude of 539 m. The climate of the region is Aw 

according the classification of Köppen. The average 

annual precipitation is 1816.9 mm. The average 

annual temperature is 25.5 °C. The soil of the 

experimental unit was classified as typical 

Dystrophic Red Latosol, moderate A, very clayey 

texture, semi-deciduous tropical forest and flat relief 

(SANTOS et al., 2013).  

In 1987, the native vegetation was cleared and 

rice was sown in the 1987/88 crop. From 1989/90 

until the 1999/2000 crop, soybean and corn were 

grown in succession, with fertilizers applied in the 

seeding row. From 2000/01 until the 2003/04 crop, 

cotton was grown. From 2004/05 to the 2013/14 

crop, soybean and corn were grown in succession, 

without ploughing the soil, with limestone and 

fertilizers applied by broadcasting. For the present 

study, in the 2013/14 crop, the soybean crop was 

evaluated (Glycine max L.). On an experimental unit 

of approximately 12.5 ha of a 55-ha-plot, cultivar 

MONSOY 7639 RR was cultivated with a spacing of 

0.45 m between rows and an average of                           

15 plants m-1. The sowing was done on October 23, 

2013 and harvest on February 5, 2014. 

To create management zones, the analyses 

were divided into six general steps: sample 

collection, data filtering, variable selection, 

interpolation, grouping, and evaluation of 

management zones. With this information, a 

flowchart was created, showing the steps and 

subprocesses (Figure 1).  
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Sample collection 

 

Soil and plant sampling was of the irregular 

mesh type, because of deviations of the contour lines 

of the culture, totaling 117 collection points. 

According to Yamamoto and Landin (2013), a 

minimum of 100 observations is recommended. The 

collection areas were georeferenced with maximum 

horizontal and vertical error of 0.05 m using a global 

positioning apparatus (brand Topcon Hiper®, Pro 

model).  

The choice of attributes for the analyzed soil 

and plants, which are discussed below, was based on 

factors related to plant productivity (RODRIGUES; 

CORÁ; FERNANDES, 2012; ALVES et al., 2013; 

COSTA et al., 2014; BAZZI et al., 2015). Disturbed 

and undisturbed soil samples were collected, along 

with samples of plants during the phenological cycle 

of the crop. At R7.2 stage of the crop, taking into 

account the area explored by soybean roots, 

disturbed soil samples were collected from the 0 to 

0.20 m layer, using a Dutch auger with a 0.20 m 

bucket, to determine the following attributes: sand, 

silt, and clay contents, using the pipette method 

(DONAGEMA et al., 2011), soil organic matter 

content, using the method of oxidation with 

potassium dichromate and colorimetric 

determination, pH in 0.01 M CaCl2 in 1:2.5 

proportion (soil:CaCl2) exchangeable P and K, 

extracted with solution of 0.05 M HCl and 0.025 M 

H2SO4 (Mehlich I), exchangeable Ca, Mg, and Al, 

extracted with 1 M KCl solution, and H and Al, 

extracted with calcium acetate solution at pH 7 

(SILVA, 2009). 

Undisturbed soil samples were collected 

using a kopeck sampler to insert steel cylinders              

(50 mm in diameter and 50 mm in height) into the 

intermediate portion of 0 to 0.10 and 0.10 to 0.20 m 

layers to obtain average values for 0 to 0.20 m layer. 

A flat auger was used to level and control the 

sampling depth. The microporosity was determined 

in the laboratory with the aid of a tension table at           

10 kPa, in addition to soil density, total porosity of 

the soil using particle density of each sampling point, 

and soil macroporosity using the difference between 

total porosity and microporosity (DONAGEMA et 

al., 2011). 

Finally, soybean grain productivity (kg ha-1) 

at the R8 stage was estimated by harvesting 4 m of 

plants at each sampling point and correcting the 

grain moisture values to 14%. In the grain samples, 

the N content were determined by acid digestion, 

distillation, and titration (Kjeldahl method), in 

addition to P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, and B 

concentrations, through simultaneous determination 

of multi-elements by atomic emission spectrometry 

with plasma induction (EEA-ICP) (SILVA, 2009). 

 

Data Filtering 

 

The measured variables were transformed 

into standardized scores (Z), such that scores greater 

than 3 and less than -3 were indicative of outliers 

(HAIR JR. et al., 2009). To confirm the normality of 

Figure 1. Support model for defining management zones.  
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the data, Shapiro–Wilk test was used (α = 0.05) 

before and after the removal of possible outliers, 

following Hair Jr. et al. (2009). 

 

Variable selection 

 

The statistical assumptions inherent to the 

analyses of statistical correlation and linear 

regression (adequacy of sample size, linearity, 

homoscedasticity, and residual normality) were 

verified, following Hair Jr. et al. (2009).  

The adequacy of the sample size was 

calculated according to the protocol of Hair Jr. et al. 

(2009), using the Student’s t distribution table at 2% 

error probability. Next, the independent variables 

were verified to determine the ones that explain the 

dependent variable, grain productivity (kg ha-1). For 

this, best subset regression analysis was done in 

Sigma Plot version 12.5, which avoids the 

occurrence of collinearity. The criteria used to select 

the best multiple linear regression model, following 

Hair Jr. et al. (2009), were variance inflation factor 

(VIFi), adjusted coefficient of determination                

(R2 Aj.), and beta coefficient (β). 

The accuracy of the multiple linear regression 

analysis, following Hair Jr. et al. (2009), was 

evaluated by the significance level of the fit using              

F-test (α = 0.05), regression coefficient (R²), and 

standard error of the estimate. The homoscedasticity 

was evaluated by Spearman rank correlation                  

(P > 0.05). The residual normality was evaluated 

using Shapiro–Wilk test (P > 0.05) in Sigma Plot 

version 12.5. 

 

Interpolation 

 

The modeled semivariograms were verified as 

isotropic using the software Gamma Design version 

10.0, with the data interpolated, following 

Yamamoto and Landin (2013), through ordinary 

kriging in 2 m × 2 m blocks. Cross-validation was 

done using linear regression analysis (P < 0.05) to 

validate the interpolation. After the cross validation 

was accepted, the interpolations were done using a 

pixel size of 1 m × 1 m for the X and Y coordinates 

and with the same contour polygon. According to 

Alves et al. (2013), this standardization ensures that 

all generated maps have the same number of pixels, 

allowing them to overlap. 

 

Data grouping 

 

The fuzzy C-means algorithm was used to 

combine the interpolated values, and then they were 

separated into groups by similarity based on 

Euclidean distance (FU; WANG; JIANG, 2010; 

RODRIGUES JUNIOR et al., 2011; DAVATGAR; 

NEISHABOURI; SEPASKHAH, 2012). The values 

were standardized to the interval [0, 1], so that all the 

sampled values had the same scale of magnitude, 

defining in 100 the maximum number of interactions 

and in 1.3 the degree of ‘fuzzification’. The software 

R (The R Project for Statistical Computing) and the 

e1071 package (MEYER et al., 2015) were used for 

this purpose. Maps were generated with group 

numbers 2 through 6. 

To determine the most appropriate number of 

groups, the Fuzzy Performance Index (FPI) and 

Normalized classification entropy (NCE) were used, 

which should converge to minimum values 

corresponding to the same class (FRIDGEN et al., 

2004). The indices available in the fclustindex 

function of the e1071 package were also used: fuzzy 

hypervolume (Fhv), xie beni (Xb), partition entropy 

(Pe), where the lowest value indicates the best 

division or most similarity among the groups, and 

the average partition density (Apd) and partition 

density (Pd) indices, where the best division 

corresponds to the highest value (MEYER et al., 

2015). Additionally, the cluster validation index 

(CVI) was used, where the smallest value indicates 

the best division (SCHENATTO et al., 2016). 

 

Evaluation of management zones 

 

To compare the values of the management 

zones, Hair Jr. et al. 2009 suggested that in case of 

observed unpaired values with a normal distribution, 

Student’s t-test should be used to compare the 

average values. Otherwise, in the absence of 

normality, the Mann–Whitney nonparametric test 

should be used to compare the average values, or the 

Kruskal–Wallis test, which is an extension of the 

Wilcoxon–Whitney test, for comparing three or more 

groups of unpaired values that do not meet the 

requirements for the analysis of variance (α = 0.05) 

(HAIR JR. et al., 2009). Therefore, the present study 

used the Mann–Whitney test. 

 

 

RESULTS AND DISCUSSION 
 

After the removal of discrepant data, the 

chemical and physical attributes of the soil (Table 1) 

and plants (Table 2) met the statistical requirements 

of normal distribution and sample adequacy. 

Therefore, after removing the outliers, of the initial 

117 paired values, there were n = 113 collected 

samples, representative of the population of interest. 

This is important according to Hair Jr. et al. (2009), 

because a low sample size might not be sufficient to 

obtain a significant correlation between the analyzed 

attributes. 
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Table 1. Descriptive statistics for the analyzed attributes of soil. 

Variables 
n(1) Min. Max. Average CV (%) 

P value 

Shapiro–Wilk(2) 
N(3) 

P (mg dm-3) 113    3.20 23.70   9.23 39.46 0.0514   3.009 

Ca (cmolc dm-3) 113 
   1.00   4.00   2.73 11.67 0.6530   3.110 

Mg (cmolc dm-3) 113 
   0.70   1.30   1.00 8.29 0.0830   1.218 

k (cmolc dm-3) 113 
   0.07   0.28   0.12 38.13 0.1200   1.074 

H (cmolc dm-3) 113 
   3.30   5.70   4.60 7.87 0.2890   4.143 

Al (cmolc dm-3) 113 
   0.00   0.40   0.02 359.45 0.0561   1.770 

SB (cmolc dm-3 113 
   2.70   5.40   3.85   12.27 0.3130   1.051 

V (%) 113 
 34.40 59.20 45.43   10.25 0.3860   4.917 

CTC (cmolc dm-3) 113 
   7.40   9.50   8.52 5.51 0.3840   1.050 

pH (CaCl) 113 
 4.7   5.52     5.035 3.56 0.0510   1.293 

Organic matter (g dm-3) 113 
 28.70 38.90 34.27 6.00 0.0582   1.959 

Sand (g kg-1) 113 
316 397 360.00 5.11 0.4360 77.173 

Silt (g kg-1) 113 
  24   61   39   22.33 0.1100 17.402 

Clay (g kg-1) 113 
550 642 599 2.73 0.7080 60.869 

Soil Density (Mg m-3) 113 
  1.22    1.39   1.30 3.18 0.3650   3.850 

Total porosity (m3 m-3) 113 
  0.45    0.53   0.49 3.22 0.8380   5.620 

Macroporosity (m3 m-3) 113 
  0.05    0.16   0.09   21.88 0.6700   9.750 

Microporosity (m3 m-3) 113 
  0.36    0.42   0.40 3.21 0.5020   3.630 

 1 (1) Number of samples after removal of discrepant data (outliers); (2) Test of normality by Shapiro–Wilk test (P > 0.05); (3) 

Minimum number of necessary data points. 

Table 2. Descriptive statistics for the analyzed attributes of soybean grains. 

(1) Number of samples after removal of discrepant data (outliers); (2) Test of normality by Shapiro–Wilk test (P > 0.05); (3) 

Minimum number of necessary samples. 

From the analyzed attributes of the soil    

(Table 1) and plants (Table 2) for the 113 samples, 

the grain productivity was found to be significantly 

correlated with the P and Mn content in the soybean 

grains. There was a positive correlation with the P 

content (r = 0.35; P < 0.01) and a negative 

correlation with the Mn content (r = - 0.33;                          

P < 0.01). Therefore, during multiple regression 

analysis with the P and Mn contents of the grains, it 

was verified that soybean grain productivity was 

explained in 19%, based on the coefficient of 

determination and with a standard error of estimate 

of only 4.7 kg ha-1 (Table 3). 

Attributes(1) 

Results of soybean grains analysis  

Min. Max. Average CV (%) 
P value 

Shapiro–Wilk(2) 

 
N(3) 

Productivity 

(kg ha-1) 
2888 4316.00  3643   8.580 0.660 

 
6.175 

N (g kg-1)   57.400  67.200 62.154   4.286 0.080  1.579 

P (g kg-1)     4.000    5.900   5.110   8.096 0.060  1.040 

K (g kg-1)   12.600  15.800 14.184   5.225 0.095  1.125 

Ca (g kg-1)     1.800    3.300   2.544 13.412 0.071  1.026 

Mg (g kg-1)     2.250    3.450   2.873   9.368 0.070  1.016 

S (g kg-1)     1.900    2.660   2.151   7.952 0.060  1.006 

Zn (mg kg-1)   30.200     45.300 37.382   9.979 0.072  3.155 

Cu (mg kg-1)     6.500     14.700 10.787 17.577 0.095  1.862 

Fe (mg kg-1)   43.000     72.000 55.680 11.587 0.138  9.203 

Mn (mg kg-1)   12.000     18.000 14.804   8.533 0.064  1.371 

B (mg kg-1)   18.500     48.100 34.136 15.047 0.126  5.861 

 1 
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Table 3. Results of multiple linear regression analysis between phosphorus and manganese content in the soybean grains 

and soybean grain productivity. 

Intercept Coefficients(1) 
r(2) R2(3) TNR(4) P Test F SEE(5) 

y0*** P** Mn** 

57.923 3.660 -1.075 0.436 0.190 0.170 < 0.001 4.748 

 1 (1) P = phosphorus, g kg-1; Mn = manganese, mg kg-1; β = beta coefficient: P (β = 0.295), (β = -0.264);                            

***(P < 0.0001), **(P < 0.01) by t-test; (2) r = Pearson correlation coefficient; (3) R2 = coefficient of determination;              
(4) TNR = test of normality by Shapiro–Wilk test (P > 0.05); (5) SEE = standard error of the estimate, kg ha-1. 

Therefore, P and Mn contents of the grains 

were the only attributes used to define the 

management zones in the present study. Dalchiavon 

et al. (2013), Costa et al. (2014), and Bazzi et al. 

(2015) also used only those attributes that showed 

significant correlation with crop productivity. As for 

the positive correlation between the grain P content 

and grain productivity, since the phosphate 

fertilization was applied by broadcasting from 

2004/05 until 2013/14, according to Barbosa et al. 

(2015), a deficiency in P absorption by the plants 

could be occurring, since it concentrates on the soil 

surface. As a result, the availability of P has 

decreased in the soil to the extent that the correlation 

between its soil content and grain content is 

significant. This indicates that for producing more 

grains, it is necessary to correct this low availability 

of P. In the case of the observed negative correlation 

for Mn, a high availability of this element in the soil 

could be an explanation, as described by Millaleo et 

al. (2010). The excess water in the soil that can 

transform Fe and Mn into soluble chemical forms 

that accumulate in the plant biomass, reaching toxic 

levels. When the plants absorb greater-than-adequate 

concentrations of Mn, it causes a reduction in grain 

productivity. 

While analyzing the variability in the grain P 

content, a degree of spatial dependence of 

approximately 62% was observed, because of the 

nugget effect, and this variance was not explained by 

the geostatistical model. As for the variability in the 

grain Mn content, a high degree of spatial 

dependence of approximately 95% was observed 

and, therefore, there was little evidence for the 

nugget effect (Table 4). 

Table 4. Results of the semivariogram adjustment of the P and Mn content in soybean grains. 

Variable 
  Parameters (1) 

R2 (2) N (3) 
Model Co Co + C Co/ Co + C A 

Pgrains Gaussian 0.07760 0.20520 0.622 145.4923 0.842 113 

Mngrains Spherical 0.07600 1.67500 0.955   32.2000 0.786 113 

 1 (1) Co = nugget effect, C = level, A = range; (2) R2 = coefficient of determination; (3) N = data pairs used. 

It was observed that the distance (A), on 

which the points were spatially dependent, was 

higher for the grain P content, although with a 

degree of spatial dependence lower than the grain 

Mn content (C/Co+C = 0.955) (Table 4). According 

to Salviano, Vieira, and Sparovek (1998), this 

suggests that the samples in the case of P content 

should have been taken at even shorter distances to 

reduce the nugget effect, in contrast to the Mn 

content. Next, cross-validation analysis of the 

observed data versus the data estimated by kriging 

was done (Table 5). 

Table 5. Results of the cross-validation analysis using linear regression. 

 1 

Variable 
Intercept Coefficient 

N (1) r R2  
P 

Test F 
SEE 

P - Test 

y0 a TNR(2) 

Pgrains   2.595***   0.493*** 113 0.682 0.465 < 0.0001 0.232 0.0526 

Mn grains 12.597*** 0.155** 113 0.374 0.140    0.0001 0.490 0.3677 

(1) N = pairs of data used to adjust the model; (2) TNR = test of normality of Shapiro–Wilk (P > 0.05). Obs.                                
*** (P < 0.0001), ** = significant (P < 0.01) by t-test. 

Studies that contain cross validation 

information are rare, but cross validation is essential 

to evaluate the interpolation capacity of the model 

(ALVES; VECCHIA, 2011; COSTA et al. 2014; 

BOTTEGA et al., 2014). Therefore, from the 

Kriging cross-validation of the observed data for 

grain P content, an intermediate explanation of 

variance was obtained (R2 ≈ 0.5), and for the grain 

Mn content, a low explanation was obtained                   

(R2 ≈ 0.14), both with a low estimation error. 

According to Yamamoto and Landin (2013), the 

explanation of cross-validation depends on the 

quantity and variability of the data. Thus, in the 

present study, since the linear regressions were 
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significant (P < 0.05), the cross validations were 

accepted and the observed data were interpolated. 

Subsequently, based on the interpolated data 

for the P and Mn content in grains, the fuzzy                 

C-means algorithm was used to group the data by 

similarity. However, since the FPI and NCE indices 

did not converge to the same number of groups, we 

decided to independently analyze each of the indices 

used, choosing the map indicated by most indices. 

This way, most of the indices described in the 

methods (NCE, Fhv, Apd, Pd, Xb, Pc, Pe, and VCI), 

which were used to define the appropriate number of 

groups, indicated that division into two groups was 

the best option; only the FPI indicated three groups 

as the best division (Table 6). 

Table 6. Calculated indices for different groups of management zones. 

Groups FPI* NCE CVI Fhv Apd Pd Xb Pc Pe 

2 
0.8508645

49 

0.12627596

9 

1.53910479

9 

2.326762

E-2 

1.992644E+

6 

1.823995E+

6 

2.879016

E-6 

0.925432

3 

0.126273

5 

3 
0.8167478

08 

0.20816552

9 

1.84861597

3 

2.734314

E-2 

1.925177E+

6 

1.649506E+

6 

4.354689

E-6 

0.877831

9 

0.208159

3 

4 
0.8339546

5 

0.21900664

7 

1.91512228

4 

2.968664

E-2 

1.701359E+

6 

1.438691E+

6 

3.27942E-

6 
0.875466 0.218998 

5 
0.8453647

2 

0.22535574

7 

1.95563820

9 

3.086225

E-2 

1.698396E+

6 

1.350175E+

6 

3.594056

E-6 

0.876291

8 

0.225344

6 

6 
0.8466863

76 

0.23423269

2 

1.99508949

7 

3.082589

E-2 

1.786789E+

6 

1.410505E+

6 

3.788689

E-6 

0.872238

6 

0.234218

7 

 1 *FPI – Fuzzy performance index; NCE – Normalized classification entropy; CVI – Cluster validation index; Fhv – Fuzzy 

hypervolume; Apd – Average partition density; Pd – Partition density; Xb – Xie beni index; Pe – Partition entropy. 

As the number of groups increases, the 

management zones become more irregular, and if 

they present a small area, management might be 

unfeasible due to technical and economic limitations. 

Therefore, the final decision depends on the 

adequacy indices and results of successive tests of 

averages, as the number of data groups generated by 

the fuzzy C-means algorithm increases arbitrarily. In 

the present study, the division into two groups or 

interval classes of similar values resulted in a map 

with 10 management zones (Figure 2).  

Figure 2. Management zones defined on the basis of interpolated and combined data for the P and Mn content in soybean 

grains, using the fuzzy C-means algorithm.  



DEFINING MANAGEMENT ZONES BASED ON SOIL ATTRIBUTES AND SOYBEAN PRODUCTIVITY 
 

 

F. T. RAMOS et al. 

Rev. Caatinga, Mossoró, v. 30, n. 2, p. 427 – 436, abr. – jun., 2017 434 

According to Taylor, Mcbratney, and Whelan 

(2007), a management zone is a spatially continuous 

area, in which a particular treatment can be applied. 

Therefore, management zones are understood as the 

number of continuous subareas delimited within the 

experimental unit, which were ten in numbers in the 

present study. However, a given color indicates a 

class or group requiring the same treatment, within a 

range of values, which are the grouped contents of P 

and Mn of the grains, that is, group 1 (green color) 

and group 2 (red color). The two groups that resulted 

in 10 management zones showed a significant 

difference in their median values, by Mann–Whitney 

test (P < 0.05) (Table 7). Thus, two groups or class 

intervals of distinct values were obtained, totaling 

ten management zones or homogeneous subareas in 

the study area. 

Table 7. Comparison of the P and Mn content in soybean grains between the two data groups, which defined 10 

management zones. 

Nutrient content Group No. of data Average 
Standard 

deviation 

Median Minimum Maximum 

Pgrains, g kg-1 1 62278   5.3750  0.164 5.330 b    5.06   6.08 

 2 38514   4.9340  0.172 4.990 a       4.4   5.22 

Mngrains, mg kg-1 1 62278 14.759 0.482 14.82 b     13.1 16.25 

 2 38514 15.03 0.764 14.95 a 12.19 17.82 

 1 *Average values that change the letter in superscript differ by the Mann–Whitney test (P < 0.05). 

Regarding the implications of the obtained 

results, there are some caveats. According to Table 3, 

grain productivity was affected by 19%, because of 

the spatial variability of P and Mn content in soybean 

grains. According to Table 7, comparing groups 1 

and 2 indicated an average difference of 0.44 g kg-1 

for P and of 0.271 g kg-1 for Mn. If an average                

3500 kg of soybeans per hectare are harvested, 19% 

of that is 665 kg. In other words, if a 60 kg sack of 

soybeans is sold at R$ 65.00, 665 kg equal a loss of 

665/60 = 11.08 sacks or 11.08 × R$ 65.00, which 

means a difference of R$ 720.00 between groups           

1 and 2 (Figure 2) . Based on such an analysis, it can 

be inferred whether the economic gain from the 

correction of management zones is viable or not. 

Therefore, it is important to evaluate the costs of 

inputs and application with respect to the 

profitability of the production sale. According to 

Caires, Wuddivira, and Bekele (2015), it is necessary 

to judge and consider the cost-benefit ratio, 

environmental sustainability, and expenditures with 

corrective operations in the field. 

 

 

CONCLUSIONS 
 

If the availability of phosphorus in the soil for 

the plants decreases, the correlation of grain P 

content with crop productivity is positive. Thus, a 

way of increasing productivity is to improve P 

availability, suggesting that phosphate fertilization 

by broadcasting is not adequate to supply P to the 

plant. If the availability of Mn in the soil for the 

plants increases, the correlation of grain Mn content 

with crop productivity is negative. Therefore, a way 

to increase productivity is to decrease the availability 

of this element, suggesting that the increase in 

macropores and biopores induced by management 

might increase soil drainage during heavy rains or 

under prolonged periods of rainfall. 

The best subset regression analysis is 

recommended to determine the best attributes that 

need to be combined in a multiple linear regression 

analysis to explain the productivity of a crop. 

The suggested steps for defining soil 

management zones are simple and useful as a guide, 

as it considers only the attributes that correlate with 

plant productivity. Further investigation is 

recommended in order to formalize a general support 

model for the definition of management zones, 

considering possible variations in the flowchart used 

in this study. 
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