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ABSTRACT - Current procedures for determining soil organic 

carbon (SOC) content are costly, time-consuming, and generate 

polluting chemical waste. Therefore, developing new protocols using 

aerial and orbital remote sensing and diffuse reflectance 

spectroscopy (DRS) for digitally mapping the stock of soil organic 

carbon (CS) is essential for promoting actions of research and 

monitoring SOC in Brazilian soils. Given this, three areas of 

commercial plots in the region of the Middle North of Mato Grosso 

were studied, where sampling was carried out for the determination 

of SOC in the layer from 0 to 30 cm, evaluated by the dry 

combustion method and estimated through DRS in the visible to near

-infrared region - Vis-NIR-SWIR/350-2500 nm). To obtain the 

images by aerial remote sensing, the Carcará II® Unmanned Aerial 

Vehicle was used, with a MicaSense® multispectral camera (RGB + 

NIR + RedEdge) attached. The orbital sensors used were the Sentinel 

2® and Planet® satellites. This study showed that soil carbon stock 

values could be predicted using different modeling approaches based 

on field and laboratory spectral measurements. Predictive models to 

estimate SOC can be established using remote and near sensing, thus 

allowing a better understanding of spatial patterns of SOC in crop 

fields. 
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RESUMO - Os procedimentos atuais de determinação do conteúdo 

de carbono orgânico do solo (COS) são onerosos, demorados e 

geram resíduos químicos poluentes. Por isso, o desenvolvimento de 

novos protocolos utilizando o sensoriamento remoto aéreo, orbital e a 

espectroscopia de refletância difusa (ERD) para o mapeamento 

digital do estoque de  carbono orgânico do solo (EC) são 

imprescindíveis para o fomento de ações de pesquisa e 

monitoramento do COS nos solos brasileiros. Diante disso, foram 

estudadas  três áreas de talhões comerciais na região do Meio Norte 

de Mato Grosso  onde realizou-se a amostragem para a determinação 

de COS na camada de 0 a 30 cm, avaliado pelo método de combustão 

via seca e estimado através da ERD  na região do visível ao 

infravermelho-próximo - Vis-NIR-SWIR/350-2500 nm) . Para 

obtenção das imagens por sensoriamento remoto aéreo, foi utilizado 

o Veículo Aéreo Não Tripulado Carcará II®, com uma câmera 

multiespectal (RGB + NIR + RedEdge) da marca MicaSense® 

acoplada. Os sensores orbitais utilizados foram o satélite Sentinel 2® 

e Planet®. Este estudo mostrou  que os valores do estoque de carbono 

do solo  podem  ser preditos usando diferentes abordagens de 

modelagem com base em medições espectrais de campo e 

laboratório. Modelos preditivos para  estimar o COS podem ser 

estabelecidos usando  sensoriamento remoto  e próximo,  permitindo  

assim uma melhor compreensão dos  padrões espaciais do COS nos 

campos de cultivo. 
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INTRODUCTION 

 

Faced with a scenario of increasing greenhouse gases (GHG) and global 

warming, there is a growing international interest in improving soil management 

to increase organic carbon (SOC), thus contributing to climate change mitigation. 

International initiatives such as '4 p 1000', launched during CPO 21 with the 

aspiration to increase global stocks of soil organic matter by 0.4% per year as 

compensation for global greenhouse gas emissions from anthropogenic sources, 

have brought to the fore the importance of accurately estimating the soil carbon 

stock (MINASNY, et al., 2017). The challenge posed by global warming has 

imposed an environmental agenda based on agricultural practices that aim to 

improve the resilience of global agroecosystems and will be decisive in future 

multilateral agreements involving the ability of soils to sequester carbon. 

According to the Intergovernmental Panel on Climate Change (IPCC, 2022), it is 

estimated that the global implementation of best agricultural and livestock 

production practices can provide 20% to 40% of the mitigation of GHG emissions 

to meet the objective of the Agreement of Paris, which is to limit global warming 
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to between 1.5°C and 2°C by the end of the next century 

(IPCC, 2022).  

To define which best practices should be adopted, it is 

first necessary to accurately estimate the amount of carbon 

that soils can store. The method of quantifying the SOC via 

dry combustion is considered an international reference, 

however, it demands considerable financial resources since 

the elemental analysis equipment has a high cost of 

acquisition and maintenance. VERRA, one of the main 

certifiers of carbon projects for carbon credits, internationally 

recognized, in its VM0042, enables the use of emerging 

technologies for quantification of SOC via remote sensing, as 

long as the uncertainties of the measurements are known 

(VERRA, 2020). 

Although technologies to accurately measure soil C 

concentrations and stocks are already available in some parts 

of the world (ANGELOPOULOU et al., 2019; PAUSTIAN et 

al., 2019; VISCARRA-ROSSEL et al., 2022), information is 

often fragmented, and data availability is often limited, there 

is still a need to develop innovative solutions to help 

laboratories rapidly characterize soils and adopt quality 

control with lower costs and ecosystem impacts (SMITH et 

al., 2012). 

Soil spectroscopy emerged as an alternative to wet 

chemistry and has already proven a reliable tool for 

determining soil organic carbon. However, soil laboratories 

still do not widely use this technology in their routines, 

mainly due to the lack of standards and protocols, spectral 

libraries, and professionals specializing in chemometrics to 

estimate robust spectral methods (POPPIEL et al., 2022). The 

accuracy of the spectral models ranges depending on some 

factors such as: soil characteristics, quantity, and sampling 

amplitude of environmental covariates of the samples used in 

the calibration and validation of the models (DEMATTÊ et 

al., 2016; RAMIREZ-LOPEZ et al., 2014; WIGHT; 

ASHWORTH; ALLEN, 2016). Among such models, aerial 

and orbital SR has become a substantial alternative for 

planning and rational use of the Earth's natural resources 

(ALVARENGA et al., 2005), being used to monitor forests, 

combat deforestation, and increase agricultural yield. 

Associated with geoprocessing techniques, studies to estimate 

plant biomass and SOC mapping stand out (DUNCAN et al., 

2018; FATOYINBO et al., 2018; BONFATTI et al., 2016; 

ANGELOPOULOU et al., 2019; BANGELESA et al., 2020). 

Thus, there is a need to use techniques that can 

measure the amount of SOC stored in the soil on a large scale, 

with good accuracy and low cost. In this context, the present 

study aimed to evaluate the potential of estimating soil carbon 

from aerial, orbital, and near remote sensing techniques in 

areas of commercial plantation in the state of Mato Grosso. 

 

 

MATERIAL AND METHODS 

 

Study area 

 

The present study was conducted in the State of Mato 

Grosso, in the Center-South and Mid-North macro-regions, in 

the municipalities of Diamantino (Aterrado farm) and Lucas 

of Rio Verde (Capuaba and Palminha farms) (Figure 1). 

Aterrado farm is located in the municipality of Diamantino 

(14º24'31'' S, 56º26'46'' W, and altitude of 269 m). The area 

has been cultivated under the succession system, with soybean 

in the first crop and corn in the second crop in the last four 

years. In 2019, second-crop corn was cultivated intercropped 

with brachiaria (Urochloa genus). The soil in the sampled 

area is a Latossolo Vermelho Amarelo Distrófico típico with 

medium texture, according to SIBS (SANTOS et al., 2013). 

 

Figure 1. Study sites and sampling points: Aterrado farm (A), Palminha farm (B), Capuaba farm (C).  
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Capuaba (13°15'8.47" S, 56°04'52.58" W, altitude of 

425 m.) and Palminha (13°27'2.37"S, 56°04'39.56"W, altitude 

of 437 m.) farms are located in the municipality of Lucas of 

Rio Verde, geographically very close, and both are based on 

soils with more limited drainage, classified according to the 

SIBCS (SANTOS et al., 2013), as Latossolo  Vermelho-

Amarelo distrófico plintossólico with very clayey texture 

(Capuaba farm) and clayey texture (Palminha farm). At 

Palminha farm, the area has been cultivated under the 

succession system, with soybean in the first crop and corn in 

the second crop in the last four years. (Figure 1B). Capuaba 

farm (Figure 1C) has more compatible management with 

sustainable practices. The no-tillage system with crop rotation 

has been established for many years. (Figure 2). According to 

the Köppen classification, the climate is humid tropical (Aw-

type), with an average temperature of 24.4 °C and an average 

annual rainfall of 1791 mm (ROCHA et al., 2018). 

The study areas have distinctive characteristics, 

covering different levels of organic matter, fertility, and soil 

texture (Table 1). These areas were chosen to contemplate 

greater variability of soil attributes.  

 
Figure 2. Crop rotation cycle of the last four harvests at Capuaba farm.  

Table 1. Contents of nutrients and particle-size composition of soils in the study areas.  

Farm Clay Sand Silt 
Organic 

Matter 
BS CEC Ca Mg K P S 

 -------------------(%)-------------------- ------------(cmolc.dm-3)---------- -----------(mg.dm-3)--------- 

Capuaba 62 33 5 3.3 54 8.8 3.3 1.2 96 32 16 

Palminha 53 38 9 3.0 57 7.1 2.8 0.6 70 27 15 

Aterrado 21 72 7 1.9 69 5.6 2.8 0.7 41 28 7 

 
BS – base saturation. CEC - cation-exchange capacity. 

Sample collection and design 

 

In the cultivated area, sampling for SOC analysis was 

carried out in the 0-30 cm layer at a sampling soil bulk density 

of 1 sample/5ha. The number of samples varied depending on 

the size of the area of each farm, Aterrado farm - 30 samples, 

Palminha farm - 31 samples, and Capuaba farm - 26 samples, 

the collection of these samples was carried out in December 
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2020 during the soybean cycle (V6 to V8), concentrating the 

sampling between the rows of the plants. For the regional 

DRS model of Vis-NIR, another set of 149 samples from plots 

neighboring the study area of Aterrado farm, collected and 

analyzed in 2019, were used, and for the general model, 

another set of samples (150) of different locations in the state 

of Maranhão, collected and analyzed in early 2021. Reference 

samples were collected at the same depth, in triplicate, in the 

native forest (reference) of the respective study areas (three 

points per farm), and these samples were used to correct the 

soil layer by soil bulk density. The disturbed samples were 

collected with a Dutch auger, homogenized in a plastic 

bucket, and packed in duly identified plastic bags. 

Subsequently, they were dried in the shade at room 

temperature (air-dried fine earth), crushed, and sieved through 

a 2 mm mesh for quantification of the SOC by the dry 

combustion method, carried out in the elemental analyzer 

LECO® and later in the reflectance spectrometer Veris VIS-

NIR (Veris Technologies). The undisturbed samples were 

collected with a 100 cm3 ring (Kopeck) sampler in the center 

of the layer. Subsequently, they were dried in an oven at 

105ºC for 48 hours to determine soil bulk density (Db) 

(Equation 1). 

 

                                                 
 

The carbon stock in the soil was calculated according 

to the equation below, correcting the soil layer by the nearest 

native vegetation soil bulk density (Equation 2). 

 

                                           
 

Where:  

CS: Carbon Stock (Mg.ha-1) 

SOC: Soil Organic Carbon (g.kg-1) 

Db: Soil bulk density (g.cm-3) 

DbRef: Reference soil bulk density (g.cm-3) 

e: Layer thickness (cm)  

 

Spectral Measurements in the Laboratory 

 

The Vis-NIR reflectance spectrometer used was the 

Veris 3150® (Veris Technologies Inc., Salina, Kansas, KS/

USA ), capable of acquiring soil reflectance information in 

two bands of the electromagnetic spectrum: visible range 

(VIS) 350 and 700 nm and near infrared (NIR) 700 and 2223 

nm, with a spectral resolution of 8 nm. Readings were taken 

in bench mode. For calibration, reference plates of the 

equipment were used. The equipment was calibrated every 50 

samples or when there was a sign of failure in the reading (red 

or orange). 

 

Air Remote Sensing  

 

An Unmanned Aerial Vehicle (UDAV) Carcará II® 

𝑫𝒃 =
𝒅𝒓𝒚 𝒔𝒐𝒊𝒍 𝒎𝒂𝒔𝒔

𝒗𝒐𝒍𝒖𝒎𝒆
 (1) 

𝑪𝑺 =
 𝑺𝑶𝑪 ∗ 𝑫𝒃 ∗  

𝑫𝒃𝒓𝒆𝒇
𝑫𝒃

∗ 𝒆 

𝟏𝟎
 (2) 

from Santos Lab was used to obtain images by aerial remote 

sensing, coupled with a MicaSense RedEdge multispectral 

sensor has five bands in the blue, green, and red spectrum 

ranges, rededge and infrared (NIR). The flight to obtain the 

images was performed in the soybean crop in the vegetative 

stages between V8 and R1. 

 

Orbital Remote Sensing 

 

The orbital sensors used were the Sentinel 2® and 

Planet® satellites. The Sentinel 2® satellite has a multispectral 

sensor with 13 spectral bands of high and medium spatial 

resolution (10, 20, and 60 m) and 12 bits of radiometric 

resolution (ESA, 2022), and high temporal resolution (10 days 

or 5 days with two satellites), which ensure the continuity of 

data needed for general land monitoring (VAN DER MEER; 

VAN DER WERFF; VAN RUITENBEEK, 2014). The 

PlanetScope constellation has around 120 satellites generating 

images of the planet daily. This satellite has an average spatial 

resolution of 3 m, a radiometric resolution of 12 bits, and 

offers 4 spectral bands in the visible and infrared (PLANET, 

2022). The acquisition of Planet® images was through the free 

availability of Planets education and research program 

(PLANET 2022). 

 

Image processing 

 

Eighty-seven (87) Planet® images were acquired for 

each study area, and 52 images from the Sentinel® 2 satellite, 

covering the period from February 2018 to December 2020. 

The interval of satellite images was approximately 10 days, 

depending on the availability of images without clouds. From 

the orbital images, the Normalized Difference Vegetation 

Indexes (NDVI) of the pixels of each sampling point were 

extracted to generate mathematical models for predicting 

carbon in the soil. 

The study areas were flown over with Carcará 2® 

during the 2020/2021 soybean harvest, in the vegetative 

stages from V8 to R1. To carry out the modeling, images in 

the red, green, blue, NIR, and RedEdge bands were used. 

After processing the images and preparing the orthomosaics, 

data were extracted at the soil collection points for the five 

bands and the following vegetative indexes: Normalized 

Difference Vegetation Index (NDVI), Green Normalized 

Difference Vegetation Index (GNDVI), Normalized 

difference red edge index (NDRE), Chlorophyll Index - Red-

Edge (CIRE), Atmospherically Resistant Vegetation Index 

(ARVI), Visible Atmospherically Resistant Index (VARI), 

and Green Chlorophyll Index (GCI). 

 

Calibration and Validation of models 

 

Seventy percent (70%) of the traditional and spectral 

analysis samples were destined for calibration and 30% for 

validation. Electromagnetic spectra in the Vis-NIR and SWIR 

wavelength range were extracted from the Veris 3150® Vis-

NIR reflectance spectrometer. In the calibration stage, 

different pre-processing and modeling methods were 
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performed to obtain models with the best adjustments and 

accuracy. 

Models were then generated for each Farm in 

particular, called the regional set, composed of samples from 

all three Farms and a general set corresponding to samples 

from the three areas and the spectral library of the company 

Santos Lab. The models were generated using the Alrad 

spectra graphical interface (DOTTO et al., 2019) in the R 

software (R CORE TEAM, 2017). The tests were performed 

with the “Support Vector Machine” (SVM), “Gaussian 

Process Regression” (GPR), “Partial Least Square 

Regression” (PLSR), and “multiple linear regression” (MLR) 

models with a cross-validation system. The relationship 

between observed and predicted values was analyzed by a 

coefficient of determination (R2), root mean square error 

(RMSE), and Ratio of Performance to InterQuartile distance 

(RPIQ) indexes. 

The RMSE calculates the average error between the 

observed and predicted values, the smaller the values for this 

variable, the better the models. High RPIQ values indicate a 

strong concentration of estimates around conditional means. 

The R² indicates how much of the total variation of the 

response variable can be explained by the predictive variables 

that make up the predictive model. Sayes, Mouazen and 

Ramon (2005) classified models based on R² values, models 

with R² between 0.50 and 0.65 make it possible to identify 

high and low concentrations, R² between 0.66 and 0.80 are 

acceptable, R² from 0.81 to 0.90 are good, and above 0.90 are 

models with excellent prediction. 

 

 

RESULTS AND DISCUSSION 

 

The results in Table 2 showed that the SOC values 

ranged from 5.7 g.kg−1 (crop field) to 43.6 g kg−1 (reference), 

with an average value of 16.2 g kg−1. For the CS, values 

ranged from 20 (crop field) to 98.1 Mg ha-1 (reference), with 

an average value of 46.8 Mg ha-1 The values found are 

consistent with those found in other studies in Brazil (BAYER 

et al., 2006; MAIA et al., 2010; MIRANDA et al., 2016).  

Table 2. Descriptive statistics of the variables used in the models of aerial and orbital sensing (Aterrado, Capuaba, and Palminha) and Vis-NIR 

(Aterrado, Capuaba, Palminha, Regional).  

Variable  
Aterrado farm Capuaba farm Palminha farm 

Regional 
Crop  Reference Crop  Reference Crop  Reference 

SOC  

(g kg-1) 

Average 8.4 14.0 16.7 19.5 15.6 22.8 16.2 

Minimum 5.7 9.2 9.9 12.3 8.1 16.5 10.3 

Maximum 12.8 21.1 21.9 43.6 19.3 26.9 24.3 

SD 1.6 6.3 2.4 12.0 2.5 4.8 4.9 

Db (Mg m-3) 

Average 1.4 1.2 1.1 1.2 1.1 1.0 1.2 

Minimum 1.2 1.1 1.0 0.8 1.0 0.9 1.0 

Maximum 1.5 1.3 1.2 1.4 1.3 1.1 1.3 

SD 0.1 0.1 0.1 0.2 0.1 0.1 0.1 

CS 

(Mg ha-1) 

Average 29.7 50.8 58.0 61.5 47.9 69.7 52.9 

Minimum 20.0 29.3 34.5 46.3 24.9 49.2 34.0 

Maximum 45.0 82.4 75.9 98.1 59.4 90.1 75.1 

SD 5.7 27.9 8.4 18.9 7.8 15.1 14.0 

 SOC – soil organic carbon; CS - soil organic carbon stock; Db - Soil bulk density. 

The results of the statistical parameters of each model 

for each area can be seen in Table 3. It is noted that there was 

variation in the results for the sample sets and studied 

variables. This variation in statistical parameters is due to the 

different characteristics of each sample group that influence 

both the spectral curve and the prediction models 

(VISCARRA-ROSSEL et al., 2016). Thus, a study developed 

in South Africa defends the idea that to be used in soil 

attribute predictions, it is necessary to have a good calibration 

with the conventional method, generally requiring a large 

sample set for the method to be effective (VAN VUUREN; 

MEYER; CLAASSENS, 2006). 

Using the partial least squares model (PLSR), of the 

five sample sets, three obtained good results for SOC in g kg-¹ 

(Regional and General), one for soil bulk density (Db) 

(Regional), and one for soil organic carbon stock (CS) 

(Aterrado Farm). Summers et al. (2011), also using PLSR, 

obtained R² values of 0.57 for SOC at validation, and 0.68 for 

a percentage of SOC, with a sample set of 303 samples of 

various types of soil in Rio Grande do Sul (DOTTO et al., 

2014). Such results are similar to those obtained in the present 

study (R²= 0.67), which used a regional set of 322 samples. 

The model presented R² above 0.5 for Palminha farm 

for the Regional and General sets. For Db, the model was 

reasonable for the General and Regional sets. For CS, only 

Aterrado farm reached values of R² above 0.5. The MLR 

model is considered the simplest form of linear regression 

analysis, proving effective for determining soil organic 



 

 
 

6  

Rev. Caatinga, Mossoró, v. 36, n. 3, p. 675 – 689, jul. – set., 2023 

ESTIMATE OF CARBON STOCK IN THE SOIL VIA DIFFUSE REFLECTANCE SPECTROSCOPY (VIS/NIR) AIR AND ORBITAL 
REMOTE SENSING 

 

 
O. C. O. FARIA et al.  

carbon, as Bayer et al. (2012) mentioned, reaching an R² of 

0.74 with 164 samples. In the present study, an R² of 0.90 was 

obtained for Capuaba Farm for calibration and 0.54 for 

validation, using 28 samples, while for Aterrado farm, an R² 

of 0.72 was obtained for calibration and 0.81 for validation 

with 33 samples. Viscarra-Rossel and Behrens (2010), using 

1104 soil samples from Australia, reached R² of 0.81, values 

higher than those found in this study. 

The SVM model had good results for the General and 

Regional set for SOC in percentage (R²cal 0.73 and 0.77; 

R²Val 0.62 and 0.67), respectively, and for SOC in g kg-¹ 

(R²cal 0.73 and 0.76; R² Val 0.62 and 0.68), respectively. The 

SVM model had good results for the percentage of SOC for 

Capuaba farm (R²cal 0.74 and R²Val 0.87). Boser et al. (1992) 

proposed that the Support Vector Machine (SVM) is a non-

linear method widely used in multivariate classification and 

calibration problems (KOVACEVIC et al., 2009).  

Table 3. Coefficient of determination (R²), root mean square error (RMSE), and ratio of performance to interquartile distance (RPIQ) for 

samples analyzed in Vis-NIR.  

SOC: Soil Organic Carbon; Db: Soil Bulk Density; CS: Soil Organic Carbon Stock; Cal: calibration; Val: validation; Cap: Capuaba 

farm; Pal: Palminha farm; At: Aterrado farm; Reg: Regional; Ge: General; GPR: Gaussian Process Regression; SVM: Support 

Vector Machine; PLSR: Partial Least Square Regression; MLR: multiple linear regression.  

 
GPR model SVM model 

 
Dataset 

Statistical 

parameters 
Cap Pal At Reg Ge Cap Pal At Reg Ge 

SOC (%) 

Cal 

R2 0.74 0.86 0.91 0.75 0.76 0.74 0.85 0.93 0.7 0.77 

RMSE 0.14 0.15 0.09 0.25 0.33 0.14 0.15 0.08 0.3 0.33 

RPIQ 1.39 2.74 2.13 2.44 2.43 1.38 2.71 2.48 2.4 2.43 

Val 

 

R2 0.84 0.49 0.67 0.61 0.66 0.87 0.22 0.31 0.6 0.67 

RMSE 0.63 0.25 0.1 0.36 0.37 0.62 0.3 0.14 0.4 0.36 

RPIQ 0.26 0.55 2.21 1.78 2.25 0.26 0.46 1.61 1.8 2.27 

SOC (g kg-¹) 

Cal 

R2 0.92 0.82 0.94 0.73 0.76 0.94 0.8 0.99 0.7 0.76 

RMSE 1.75 1.56 0.78 2.53 3.19 1.52 1.71 0.3 2.6 3.23 

RPIQ 1.01 1.96 3 2.49 2.51 1.16 1.79 7.72 2.4 2.47 

Val 

R2 0.15 0.07 0.34 0.63 0.69 0.17 0.15 0.29 0.6 0.68 

RMSE 3.52 4.37 1.59 3.84 3.94 3.38 4.16 1.76 3.5 4.04 

RPIQ 1.18 0.53 1.14 1.62 2.22 1.23 0.56 1.03 1.8 2.16 

Db 

Cal 

R2 0.7 0.72 0.76 0.87 0.79 0.67 0.73 0.99 0.9 0.8 

RMSE 0.04 0.05 0.05 0.07 0.09 4.97 3.82 2.26 7.7 12.8 

RPIQ 3.05 2.14 2.92 4.73 3.57 1.85 2.04 2.36 2.2 1.74 

Val 

R2 0 0.07 0.26 0.78 0.71 0.04 0.05 0.8 0.4 0.15 

RMSE 0.19 7.52 0.22 0.09 0.11 6.64 8.89 9.48 11 17.9 

RPIQ 0.57 1.15 0.42 3.81 2.85 0.88 0.97 0.91 1.2 1.16 

CS 

Cal 

R2 0.86 0.85 0.82 0.73 0.51 0.85 0.92 0.85 0.7 0.45 

RMSE 4.81 5.07 2.41 7.66 12.2 4.97 3.82 2.26 7.7 12.8 

RPIQ 1.91 1.53 2.22 2.24 1.82 1.85 2.04 2.36 2.2 1.74 

Val 

R2 0.27 0.22 0.79 0.44 0.18 0.04 0.05 0.8 0.4 0.15 

RMSE 4.36 7.52 9.34 10.8 17 6.64 8.89 9.48 11 17.9 

RPIQ 1.34 1.15 0.9 1.27 1.23 0.88 0.97 0.91 1.2 1.16 

MLR model PLSR model 

 
Dataset 

Statistical 

parameters 
Cap Pal At Reg Ge Cap Pal At Reg Ge 

SOC (%) 

Cal 

R2 0.93 0.9 0.72 0.5 0.49 0.97 0.92 0.49 0.6 0.67 

RMSE 0.07 0.12 0.09 0.35 0.48 0.04 0.11 0.13 0.31 0.38 

RPIQ 2.74 3.44 2.36 1.76 1.69 4.7 3.78 1.73 1.99 2.09 

Val 

R2 0.54 0.12 0.81 0.44 0.47 0.69 0.06 0.05 0.57 0.64 

RMSE 0.74 0.44 0.19 0.42 0.46 0.66 0.37 0.41 0.37 0.38 

RPIQ 0.22 0.31 0.93 1.51 1.78 0.25 0.38 0.44 1.73 2.17 

MLR model PLSR model 

 
Dataset 

Statistical 

parameters 
Cap Pal At Reg Ge Cap Pal At Reg Ge 

SOC (g kg-¹) 

Cal 

R2 0.99 0.86 0.91 0.55 0.53 0.99 0.85 0.94 0.64 0.6 

RMSE 0.58 1.36 0.88 3.62 4.41 0.48 1.42 0.74 2.94 4.03 

RPIQ 3.05 2.24 2.64 1.65 1.81 3.7 2.15 3.14 2.09 1.98 

Val 

R2 0.43 0.5 0.41 0.52 0.6 0.31 0.09 0.35 0.67 0.67 

RMSE 5.28 3.81 1.72 3.19 4.46 4.02 4.81 1.87 3.3 4.04 

RPIQ 0.79 0.61 1.05 2.12 1.96 1.03 0.48 0.97 1.93 2.17 

Db Cal 
R2 0.72 0.59 0.31 0.76 0.59 0.55 0.45 0.46 0.82 0.68 

RMSE 2.25 3.64 2.65 9.91 14.73 6.42 6.68 2.32 9.67 14.67 
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In general, the GPR model had better development for 

predicting the percentage of SOC than the other models. This 

model also had satisfactory results for SOC in g kg-¹ and Db 

in the regional and general sets. The GPR model allows 

obtaining non-parametric regressions (DOTTO et al., 2018), 

equivalent to interpolation by kriging in geostatistics, but it 

does not use information from geographic coordinates but 

from spectral data (RAMIREZ-LOPEZ et al., 2013). 

As the GPR model showed the best performance for 

both farms for % SOC, a comparison was made between the 

predicted carbon and elemental analyzer results (Figure 3A). 

At the Palminha farm, the model obtained a lower R2 (0.49) 

than the others and, therefore, a lower predictive capacity, 

overestimating the % SOC values. On the Aterrado farm, the 

 
GPR model SVM model 

MLR model PLSR model 

 
Dataset 

Statistical 

parameters 
Cap Pal At Reg Ge Cap Pal At Reg Ge 

SOC (%) 

Cal 

R2 0.93 0.9 0.72 0.5 0.49 0.97 0.92 0.49 0.6 0.67 

RMSE 0.07 0.12 0.09 0.35 0.48 0.04 0.11 0.13 0.31 0.38 

RPIQ 2.74 3.44 2.36 1.76 1.69 4.7 3.78 1.73 1.99 2.09 

Val 

R2 0.54 0.12 0.81 0.44 0.47 0.69 0.06 0.05 0.57 0.64 

RMSE 0.74 0.44 0.19 0.42 0.46 0.66 0.37 0.41 0.37 0.38 

RPIQ 0.22 0.31 0.93 1.51 1.78 0.25 0.38 0.44 1.73 2.17 

MLR model PLSR model 

 
Dataset 

Statistical 

parameters 
Cap Pal At Reg Ge Cap Pal At Reg Ge 

SOC (g kg-¹) 

Cal 

R2 0.99 0.86 0.91 0.55 0.53 0.99 0.85 0.94 0.64 0.6 

RMSE 0.58 1.36 0.88 3.62 4.41 0.48 1.42 0.74 2.94 4.03 

RPIQ 3.05 2.24 2.64 1.65 1.81 3.7 2.15 3.14 2.09 1.98 

Val 

R2 0.43 0.5 0.41 0.52 0.6 0.31 0.09 0.35 0.67 0.67 

RMSE 5.28 3.81 1.72 3.19 4.46 4.02 4.81 1.87 3.3 4.04 

RPIQ 0.79 0.61 1.05 2.12 1.96 1.03 0.48 0.97 1.93 2.17 

Db 

Cal 

R2 0.72 0.59 0.31 0.76 0.59 0.55 0.45 0.46 0.82 0.68 

RMSE 2.25 3.64 2.65 9.91 14.73 6.42 6.68 2.32 9.67 14.67 

RPIQ 3.66 2.14 3.42 1.73 1.51 1.43 1.16 2.3 1.78 1.52 

Val 

R2 0.24 0.24 0.84 0.45 0.19 0.44 0.13 0.78 0.46 0.17 

RMSE 11.58 8.9 7.43 10.62 16.6 4.1 7.93 8.4 10.6 17.02 

RPIQ 0.51 0.97 1.12 1.29 1.24 1.42 1.09 1.03 1.29 1.22 

CS 

Cal 

R2 0.96 0.92 0.81 0.53 0.25 0.73 0.73 0.82 0.55 0.25 

RMSE 2.25 3.64 2.65 9.91 14.73 6.42 6.68 2.32 9.67 14.67 

RPIQ 3.66 2.14 3.42 1.73 1.51 1.43 1.16 2.3 1.78 1.52 

Val 

R2 0.24 0.24 0.84 0.45 0.19 0.44 0.13 0.78 0.46 0.17 

RMSE 11.58 8.9 7.43 10.62 16.6 4.1 7.93 8.4 10.6 17.02 

RPIQ 0.51 0.97 1.12 1.29 1.24 1.42 1.09 1.03 1.29 1.22 

 

 

Coefficient of determination (R2) 

  
0                                  0.5                                1 

Table 3. Continuation. 

SOC: Soil Organic Carbon; Db: Soil Bulk Density; CS: Soil Organic Carbon Stock; Cal: calibration; Val: validation; Cap: Capuaba 

farm; Pal: Palminha farm; At: Aterrado farm; Reg: Regional; Ge: General; GPR: Gaussian Process Regression; SVM: Support 

Vector Machine; PLSR: Partial Least Square Regression; MLR: multiple linear regression.  
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results of % SOC showed greater similarity with the measured 

values and less variation (Figure 3B), this is due to the better 

distribution of values on the perfect fit line, the smaller square 

root of the mean error, as well as the various carbon footprint 

in that area. For the Capuaba farm (Figure 3B), the % SOC 

values were underestimated to a greater degree than the 

Aterrado farm.  

 

Figure 3. Soil organic carbon variation maps predicted by the GPR model of the three farms (A: Palminha, B: Aterrado, C: Capuaba) compared 

to that measured by the dry combustion method.  

An advantage of the GPR model over other machine 

learning approaches is that it models both the expectation and 

the random variable, thus making it possible to map the 

prediction uncertainty. In addition, it also allows finding the 

noise of the input data and processing them to avoid 

overfitting (BALLABIO et al., 2019). Dotto et al. (2019), 

when using the GPR model, obtained R² of 0.81 in calibration 

and 0.73 in validation for SOC and concluded that GPR needs 

to be considered a SOC prediction method for Vis-NIR 

spectroscopy. 

The calculation of the bias for the GPR model showed 

a result of -1.64, 7.67, and 14.10 for the Capuaba, Aterrado, 

and Palminha farms, respectively, where the greatest bias for 

the Palminha farm indicates the greatest error, which may 

explain the lack of coincidence between the maps with the 

predicted and observed values. 

The dispersion of the observed and predicted values 

when each model was applied only to the spectral curves of 

the respective observed values can be observed for each 

study area in Figure 4, where the estimated values above the 

observed values indicate an overestimation of the model and 

below it indicates an underestimation of the model.  

 

Figure 4. Data dispersion concerning the perfect fit line. 
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In general, there were several spectral ranges of 

importance, justified by the fact that the SOC comes from 

organic matter and has an absorption in the entire spectrum 

range (BEN-DOR; BANIN, 1995), being associated with 

hydroxyl groups, sulfates, carbonates, and combinations of 

water and carbon dioxide existing in the organic matter 

composition (CLARK; RENCZ, 1999). 

The most important spectral bands of the study were 

from 400 to 800 nm and 1400 to 1800 nm. Viscarra-Rossel et 

al. (2016) observed a correlation in the spectral ranges 

between 500 and 850 nm with the SOC, corroborating the 

study. Absorptions around 1400 nm may be related to the 

water molecule in clay minerals and linked to cellulose in 

organic waste (MOURA-BUENO, 2018). Jiang et al. (2017) 

state that regions between 400-800, 1900, and 2000-2350 are 

important in estimating SOC by Vis-NIR, as observed in this 

study, where the range from 1400 to 1800 was decisive for 

predicting SOC in the area of Aterrado Farm, which may 

explain the greater accuracy of the maps for this area. 

 

Orbital Remote Sensing 

 

In general, the remote orbital sensors used in this study 

(Planet® and Sentinel 2®) showed lower performance for 

predicting SOC and CS when compared to Vis-NIR. Such 

results are expected, considering the distance between the 

satellite and the earth's surface, the atmosphere layer, and 

electromagnetic radiation dissipating agents (DEMATTÊ; 

TOLEDO; SIMÕES, 2004). 

For the Planet® satellite, the Capuaba farm area 

obtained two satisfactory R² results from the MLR models for 

carbon in percentage and PLSR for CS. The other areas of the 

other two farms did not present reliable results for predicting 

the studied variables (Table 4).  

Table 4. Coefficient of determination (R²), root mean square error (RMSE), and ratio of performance to interquartile distance (RPIQ) for 

samples analyzed on the Planet® orbital remote sensor.  

SOC: Soil Organic Carbon; CS: Soil Organic Carbon Stock; Cal: calibration; Val: validation; Cap: Capuaba; Pal: 

Palminha; At: Aterrado; Cal: calibration; Val: validation; GPR: Gaussian Process Regression SVM: Support Vector 

Machine; PLSR: Partial Least Square Regression; MLR: multiple linear regression. 

GPR model SVM model 

 
Data set Statistical parameters Cap Pal At Cap Pal At 

SOC (%) 

Cal 

R
2
 0.16 0.25 0.81 0.79 0.23 1 

RMSE 0.23 0.25 0.11 0.11 0.24 0.02 

RPIQ 0.7 1.2 2.26 1.43 1.26 14.48 

Val 

R
2
 0.08 0.17 0.45 0.28 0.11 0.48 

RMSE 0.29 0.24 0.14 0.26 0.23 0.13 

RPIQ 0.41 1.09 0.84 0.46 1.14 0.92 

SOC (g kg-¹) 

Cal 

R
2
 0.15 0.31 0.85 0.49 0.42 0.87 

RMSE 2.71 2.47 1.03 1.85 2.26 0.8 

RPIQ 0.45 0.85 2.5 0.66 0.92 3.52 

Val 

R
2
 0.55 0.04 0.32 0.03 0.38 0.35 

RMSE 1.88 1.97 1.35 2.93 2.64 0.94 

RPIQ 1.05 2 0.68 0.68 1.5 0.69 

CS 

Cal 

R
2
 0.32 0.25 0.81 0.59 0.25 0.86 

RMSE 9.33 7.71 3.77 8.57 8.07 3.03 

RPIQ 0.39 1.21 2.3 0.42 1.16 2.86 

Val 

R
2
 0.55 0.11 0.35 0.49 0.2 0.45 

RMSE 7.58 7.84 4.49 5.42 5.73 4.35 

RPIQ 0.84 0.68 0.94 1.18 1.17 0.97 

   
MLR model PLSR model 

 
Data set Statistical parameters Cap Pal At Cap Pal At 

SOC (%) 

Cal 

R
2
 0.78 0.57 0.77 0.18 0.32 0.43 

RMSE 0.1 0.17 0.08 0.18 0.22 0.13 

RPIQ 1.55 1.8 2.97 0.89 1.33 1.89 

Val 

R
2
 0.55 0.38 0.26 0.09 0.22 0.45 

RMSE 0.23 0.24 0.31 0.29 0.21 0.14 

RPIQ 0.51 1.09 0.38 0.41 1.22 0.85 
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For the Sentinel 2® satellite, Capuaba farm obtained R² 

of 0.69 and 0.50 for calibration and validation in the PLSR 

model, respectively. Aterrado Farm presented satisfactory 

results for the GPR and SVM models for SOC in g kg-¹ (Table 

5).  

Satellite images have been used for various scientific 

or environmental applications (HUANG; ROY, 2021). Asner 

et al. (2017) used the Planet® satellite to classify land cover, 

while Csillik et al. (2019) used it to map CS in a tropical 

forest. More accurate results were observed for SOC in the 

soil by using hyperspectral images, with a neural network and 

multivariate regression, but evaluating the soils without the 

plant component, that is, exposed soil (MCCARTY et al., 

2010). However, in agricultural areas of the Cerrado, soil 

exposure has been an infrequent practice since the 2000s. 

Thus, the results of the present study, even with lower 

accuracies than those performed with exposed soils, show the 

potential of NDVI time series (of the canopy) in reflecting the 

CS in the soil. Zhang et al. (2019) obtained prediction 

accuracies similar to those presented in the present study and 

better prediction performances when using NDVI time series 

instead of single data (specific dates). This finding highlights 

the importance of CS for the vegetative vigor of plants and, 

consequently, the ability of this indirect parameter to explain 

CS variations in the soil. 

Jaber and Al-Qinna (2011) also obtained low accuracy 

in the prediction of SOC with orbital remote sensing, and the 

authors attributed this result to the weak correlation between 

the total carbon and the reflectance of the satellite bands. The 

soil bulk density of samples used in generating the models is 

also a possible reason for the low accuracy of the models 

(GUO et al., 2018). 

He et al. (2021), working with a Sentinel 2® satellite 

and using various vegetative indexes, found the best 

prediction with an R² of 0.38. Wiesmeier et al. (2019) found 

R² of 0.21, Guo et al. (2021) obtained R² of 0.48 in calibration 

and 0.17 in validation using the PLSR model. All these results 

demonstrate similarity with those found in this study.  

Table 4. Continuation.  

GPR model SVM model 

   
MLR model PLSR model 

 
Data set Statistical parameters Cap Pal At Cap Pal At 

SOC (g kg-¹) 

Cal 

R
2
 0.92 0.81 0.67 0.11 0.26 0.87 

RMSE 0.68 1.14 1 2.11 2.22 0.8 

RPIQ 2.67 1.84 2.79 0.94 0.94 3.52 

Val 

R
2
 0.01 0.28 0.04 0.31 0.18 0.35 

RMSE 3.32 3.64 2.7 2.91 2.18 0.94 

RPIQ 0.37 1.09 0.24 1.2 1.82 0.69 

CS 

Cal 

R
2
 0.89 0.69 0.34 0.62 0.24 0.36 

RMSE 3.07 4.47 4.71 5.84 6.97 4.64 

RPIQ 1.18 2.09 1.84 0.62 1.34 1.87 

Val 

R
2
 0.21 0.05 0.37 0.61 0.19 0.82 

RMSE 10.38 7.92 4.81 9.07 6.27 2.71 

RPIQ 0.61 0.85 0.87 0.7 1.07 1.55 

 

 

 

Coefficient of determination (R2) 

  
0                                  0.5                                1 

SOC: Soil Organic Carbon; CS: Soil Organic Carbon Stock; Cal: calibration; Val: validation; Cap: Capuaba; Pal: 

Palminha; At: Aterrado; Cal: calibration; Val: validation; GPR: Gaussian Process Regression SVM: Support Vector 

Machine; PLSR: Partial Least Square Regression; MLR: multiple linear regression. 
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Table 5. Coefficient of determination (R²), root mean square error (RMSE), and ratio of performance to interquartile distance (RPIQ) values for 

samples analyzed on the Sentinel 2® remote orbital sensor.  

GPR model SVM model 

 Data set Statistical parameters Cap Pal At Cap Pal At 

SOC (%) 

Cal 

R2 0.97 0.19 0.76 0.97 0.22 0.8 

RMSE 0.03 0.26 0.08 0.03 0.27 0.07 

RPIQ 5.78 1.13 2.01 4.35 1.09 2.33 

Val 

R2 0.44 0.08 0.15 0.15 0.09 0.12 

RMSE 0.7 0.21 0.19 0.39 0.22 0.22 

RPIQ 0.63 1.36 0.93 1.13 1.26 0.81 

SOC (g kg-¹) 

Cal 

R2 0.64 0.98 0.77 0.81 0.3 0.75 

RMSE 1.86 1.11 1.12 1.36 2.19 1.06 

RPIQ 1.29 2.65 2.2 1.76 1.34 2.32 

Val 

R2 0.01 0.11 0.66 0.03 0.08 0.5 

RMSE 1.77 3.33 0.94 1.25 3.34 0.93 

RPIQ 0.39 1.2 0.99 0.55 1.19 0.99 

CS 

Cal 

R2 0.97 0.15 0.75 0.15 0.17 0.9 

RMSE 3.6 8.7 3.23 6.8 8.94 2.29 

RPIQ 1.57 1.59 1.85 0.83 1.54 2.62 

Val 

R2 0.28 0.15 0.05 0.62 0.24 0.12 

RMSE 10.68 4.05 6.25 11.12 3.66 6.5 

RPIQ 0.42 0.56 0.7 0.4 0.62 0.67 

 
MLR model 

 
PLSR model 

 
Data set Statistical parameters Cap Pal At Cap Pal At 

SOC (%) 

Cal 

R2 0.51 0.18 0.61 0.69 0.16 0.67 

RMSE 0.1 0.24 0.08 0.08 0.24 0.08 

RPIQ 1.49 1.24 2.07 1.87 1.23 2.25 

Val 

R2 0.4 0.07 0.23 0.5 0.02 0.17 

RMSE 1.29 0.21 0.2 0.51 0.21 0.18 

RPIQ 0.34 1.35 0.89 0.85 1.35 1.01 

SOC (g kg-¹) 

Cal 

R2 0.58 0.43 0.51 0.38 0.13 0.39 

RMSE 1.76 1.59 1.21 2.13 1.96 1.34 

RPIQ 1.36 1.84 2.05 1.13 1.5 1.84 

Val 

R2 0 0.01 0.39 0.03 0.15 0.52 

RMSE 2.34 3.85 1.11 2.51 3.4 0.89 

RPIQ 0.29 1.04 0.84 0.27 1.17 1.03 

CS 

Cal 

R2 0.39 0.11 0.61 0.49 0.13 0.67 

RMSE 5.33 8.23 3.17 4.85 8.12 2.92 

RPIQ 1.06 1.68 1.89 1.16 1.7 2.05 

Val 

R2 0.62 0.11 0.2 0.28 0.01 0.1 

RMSE 9.11 4.41 6.05 9.47 5.05 5.76 

RPIQ 0.49 0.52 0.72 0.47 0.45 0.76 

 

 

       

 

Coefficient of determination (R2) 

  
0                                  0.5                                1 

SOC: Soil Organic Carbon; CS: Soil Organic Carbon Stock; Cal: calibration; Val: validation; Cap: Capuaba; Pal: 

Palminha; At: Aterrado; Cal: calibration; Val: validation; GPR: Gaussian Process Regression SVM: Support Vector 

Machine; PLSR: Partial Least Square Regression; MLR: multiple linear regression.  
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Air Remote Sensing 

 

The airborne remote sensor used in this work presented 

satisfactory results only for the regional group with the SOC 

variable (g kg-1) with the SVM model (Table 6). The better 

performance of the SVM and GPR models in the regional 

group can be explained by the greater amount of data that 

make up the model and the greater variation in the values of 

the covariates. 

Table 6. Coefficient of determination (R²), root mean square error (RMSE), and ratio of performance to interquartile range (RPIQ) values for 

samples analyzed in the airborne remote sensor.  

 

   
GPR model SVM model MLR model 

 
Data set SP Cap Pal At Reg Cap Pal At Reg Cap Pal At Reg 

SOC (%) 

Cal 

R2 0.23 0.54 0.41 0.66 0.13 0.56 0.41 0.71 0 0.0 0.0 0.0 

RMSE 0.19 14 1.54 0.24 0.2 0.14 0.11 0.23 0.22 2 0.14 0.43 

RPIQ 0.53 1.4 1.12 3.32 0.5 1.49 1.84 3.4 0.47 1.01 1.43 1.85 

Val 

R2 0.0 0.05 0.05 0.23 0.01 0.04 0.02 0.23 0.0 0.0 0.0 0.0 

RMSE 0.42 0.34 3.6 0.39 0.39 0.36 0.27 0.42 0.3 0.35 0.23 0.47 

RPIQ 0.91 0.98 0.48 0.7 0.97 0.92 0.84 0.65 1.26 0.94 0.97 0.58 

SOC (g.kg-¹) 

Cal 

R2 0.41 0.45 0.51 0.59 0.41 0.34 0.57 0.58 0.0 0.0 0.12 0.04 

RMSE 1.54 1.94 1.27 2.88 1.64 2.12 1.19 2.94 1.98 2.59 1.66 4.42 

RPIQ 1.12 1.85 1.43 2.87 1.05 1.69 1.53 2.81 0.86 1.39 1.09 1.87 

Val 

R2 0.05 0.03 0.02 0.75 0.01 0.34 0.05 0.78 0 0 0.1 0.03 

RMSE 3.6 2.53 2.83 2.37 3.53 1.78 3.43 2.06 3.28 2.23 1.82 3.92 

RPIQ 0.48 0.7 0.57 2.9 0.49 1 0.47 3.34 0.53 0.79 0.9 1.75 

CS 

Cal 

R2 0.25 0.45 0.48 0.47 0.2 0.43 0.45 0.42 0 0.12 0.11 0.05 

RMSE 8.45 5.82 5.67 8.73 8.87 5.9 5.8 9.15 9.69 7.31 7.35 11.69 

RPIQ 0.98 1.79 0.93 2.19 0.93 1.77 0.91 2.09 0.85 1.43 0.72 1.63 

Val 

R2 0.16 0.02 0.02 0.49 0.78 0.2 0.2 0.45 0 0.21 0.03 0.27 

RMSE 51.4 8.78 8.37 8.09 25.57 6.85 11.7 8.44 2.56 8.65 5.52 10.42 

RPIQ 0.06 0.8 0.95 1.79 25.57 1.03 0.68 1.72 1.22 0.81 1.44 1.39 

    

 

   

Coefficient of determination (R2) 

  
0                                  0.5                                1 

SOC: Soil Organic Carbon; SP: Statistical Parameter CS: Soil Organic Carbon Stock; Cal: calibration; Val: validation; Cap: Capuaba; 

Pal: Palminha; Reg: Regional GPR: Gaussian Process Regression SVM: Support Vector Machine; MLR: multiple linear regression.  

Biney et al. (2021), using a Micasense camera with 

two sensors (RGB + Multispectral) with the last band being a 

thermal infrared sensor, coupled to a fixed-wing aircraft, 

found R² ranging from 0.11 to 0.29 using an SVM model and 

bank of data composed of local samples. The results obtained 

by Biney et al. (2021) are similar to those found in the present 

study when implementing modeling with restricted or local 

databases. 

Gilliot et al. (2017), flying over an area of 13 hectares 

in Versalhes with exposed soil and using a multispectral 

camera, obtained R² from 0.80 to 0.90 for SOC. These results 

indicate that, with time constraints of information for airborne 

sensors, flights in ground moments exposed provide better 

predictive capabilities for SOC mapping. 

This research demonstrates the need for further studies 

to predict SOC by orbital and aerial remote sensing. Close 

sensing through Vis/NIR spectroscopy showed satisfactory 

results for most sets and models for each area under study, 

demonstrating to be equipped with a high level of reliability, 

with greater accuracy when used with regional or general 

databases since the greater variability in soil characteristics 

(mineralogy, particle-size, carbon content, among others) 

allows for greater amplitude in the models. 

 

 

CONCLUSIONS 

 

This study emphasized the importance of using remote 
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sensors for predicting SOC and CS, identifying some 

vulnerabilities in predicting SOC and CS from airborne and 

orbital remote sensors. SOC estimation with different 

modeling techniques and various pre-treatment algorithms 

shows that the predictive ability of spectral data can be 

improved depending on the machine learning algorithm used 

and the remote sensors used. There is enormous potential in 

this field, with immediate applications of techniques that 

allow maximizing mapping and monitoring of carbon stock in 

the soil. 
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