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ABSTRACT - Quantifying soil gas emissions is costly, since it requires specific methodologies and 

equipment. The objective of this study was to evaluate modeling by nonlinear regression and artificial neural 

networks (ANN) to estimate CO2 emissions caused by soil managements. CO2 emissions were evaluated in two 

different soil management systems: no-tillage and minimum tillage. Readings of CO2 flow were carried out by 

an automated closed system chamber; soil temperature, water content, density, and total organic carbon were 

also determined. The regression model and the ANN models were adjusted based on the correlation of the 

variables measured in the areas where the soil was managed with no-tillage and minimum tillage with data of 

CO2 emission. Artificial neural networks are more accurate to determine correlations between CO2 emissions 

and soil temperature, water content, density, and organic carbon content than linear regression. 
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ESTIMATIVAS DE EMISSÃO DE CO2 EM SOLOS CULTIVADOS POR MEIO DE REDES 

NEURAIS ARTIFICIAS E MODELO LINEAR DE REGRESSÃO 

 

 

RESUMO - A quantificação das emissões destes gases do solo é onerosa, uma vez que requer metodologias e 

equipamentos específicos. O objetivo deste foi avaliar a modelagem utilizando regressão não linear e redes 

neurais artificiais para estimar a emissão de CO2 em função do manejo do solo, e de suas propriedades físicas e 

químicas. A emissão de CO2 foi avaliada em dois diferentes manejos do solo, o plantio direto e o cultivo 

mínimo. As leituras de fluxo CO2 foram realizadas por meio de uma câmara de sistema fechado automático, 

determinou-se ainda a temperatura e teor de água do solo, densidade do solo e carbono orgânico total. O 

modelo de regressão e os modelos de redes neurais artificiais foram ajustados a partir da correlação entre as 

variáveis medidas nas áreas em que o solo foi manejado com plantio direto e cultivo mínimo, com os dados de 

emissão de CO2. As redes neurais artificiais são mais precisas na determinação das relações entre a emissão de 

CO2 e a temperatura, teor de água no solo, densidade do solo e carbono orgânico, quando comparado com os 

resultados de regressão linear. 

 

Palavras-chave: Gases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial. 
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INTRODUCTION 
 

Greenhouse gas (GHG) emissions contribute 

to climate change and are the subject of studies on 

their effects, causes, and mitigation factors 

(OERTEL et al., 2016; RIAHI et al., 2017; NAWAZ 

et al., 2019). It is estimated that world agriculture 

accounts for approximately 22% of total carbon 

dioxide emissions, 80% of nitrous oxide emissions, 

and 55% of methane emissions (LIU et al., 2019). 

The cultivation method, implementation of 

precision farming techniques, use of crops with high 

potential for carbon sequestration, adequate 

management of crops and pastures, and reforestation 

of agricultural areas are factors that can reduce GHG 

emissions from agriculture (ZHAO et al., 2018; 

RUTKOWSKA et al., 2018). 

The adaptation of current land-use practices 

should be considered relevant to mitigate climate 

change, because CO2 from basal soil respiration is 

important for carbon cycle. CO2 emissions are 

related to soil properties: organic matter (YUSTE et 

al., 2019), soil moisture (DOWHOWER et al., 

2020), soil temperature (YUSTE et al., 2019; ZOU et 

al., 2018), and soil microbial communities 

(NIKOLENKO et al., 2019). There is proven 

evidence that properly managed soils may become 

carbon sinks, contributing significantly to the 

reduction of CO2 emissions to the atmosphere 

(FARINA et al., 2017). 

The quantification of emissions of these soil 

gases is costly, since it requires specific 

methodologies and equipment. Some methodologies 

for their estimation by modeling CO2 emissions and/

or carbon sequestration potential in agricultural soils 

have been tested at different scales (MARTÍN et al., 

2016; GOMES et al., 2019). 

The application of artificial neural networks 

(ANN) can be an alternative for modeling the 

correlation of CO2 emissions with other parameters 

related to soil physical and chemical properties and 

climatic and environmental factors. This approach 

has been successfully applied to optimize, predict, 

and control complex systems (BURAGIENĖ et al., 

2019; DIAO et al, 2021), such as CO2 emissions. 

Artificial neural networks have been applied for 

modeling relationships between parameters within 

complex systems in different environmental areas, 

for example, to estimate soil temperature 

(FERNANDES et al., 2019), predict chemical 

composition and other soil properties from field 

observations (MELAKU et al., 2020) and soil NO 

emissions (DENG et al., 2020; JEREMIAH et al., 

2021), and model soil respiration in forest 

ecosystems (LIMA et al., 2020). 

The hypothesis considered in the present 

study is that the use of ANN presents higher 

efficiency and precision for the estimation of CO2 

emissions than multivariate regression modeling. 

Therefore, researches on ANN may be useful to 

estimate GHG because it is a technique that presents 

significant results for evaluations of complex 

systems. Thus, the objective of the present study was 

to evaluate modeling by nonlinear regression and 

ANN to estimate CO2 emissions caused by soil 

managements. 

 

 

MATERIAL AND METHODS 
 

The study was conducted at the experimental 

area of the Instituto Federal de Educação, Ciência e 

Tecnologia do Espírito Santo, Santa Teresa campus 

(19°48'17"S, 40°40'34"W, and average altitude of 

125 m), in the municipality of Santa Teresa, ES, 

Brazil. The climate of the region is Cwa, 

characterized as humid temperate, with dry winter 

and hot summer, according to the Köeppen 

classification (ALVARES et al., 2014). According to 

a local weather station, the mean annual rainfall 

depth is 1,161 mm, with mean annual temperature of 

24.4 °C. The predominant soil of the study area 

presented a clayey texture and was classified as a 

Typic Hapludox (Latossolo Amarelo; EMBRAPA, 

2018). The study was conducted from August 2016 

to March 2017. Soil preparation was carried out in an 

area under a center pivot irrigation system that 

covered 12 hectares (ha). 

The no-tillage system had been implemented 

in an area of 6 ha since 2009, with crop rotation 

(common bean - maize - velvet beans or sorghum) 

for grain production. Minimum tillage was 

implemented in an area where some conservation 

practices, such as fallow, had been carried out since 

2015. 

Soil CO2 flow readings (μmol CO2 m−2 s−1) 

were carried out using an automated closed system 

chamber (LI-COR® Biosciences, Lincoln, USA), 

which uses an infrared gas analyzer model LI-

8100A, with an opaque chamber model LI-8100-

104C. This system was operated through sampling 

carbon dioxide concentrations by optical absorption 

spectroscopy. Installation of PVC rings (0.203 m 

diameter and 0,1143 m height) was necessary for the 

measurements because it prevents disturbances that 

the direct insertion of the chamber into the soil could 

cause, such as alteration in porous structures, which 

would directly affect the soil CO2 emission, 

overestimating the readings. 

The PVC rings were inserted into the soil 

with a chamber off-set (of the top of the ring above 

the soil surface) of 0.02 m; the dry matter on the soil 

was cut, so that the ring fixation does not modify the 

soil cover composition. The PVC rings were 

installed at 180 days before the readings. The 

readings were carried out in three consecutive days 

in each system. Each reading lasted 2 min, 

measuring the carbon dioxide concentration inside 

the chamber every second. 

Soil temperature and water contents were 
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sampled simultaneously with CO2 emission readings. 

A temperature and humidity sensor (5TM Decagon 

Devices®) was used. Sampling was carried out at 

0.10 m distant from the external part of the PVC 

ring, reaching 0.05 m depth. The soil density in the 

0.00-0.20 m layer was evaluated using an Uhland 

sampler and a volumetric ring. 

Soil samples were dried at 50 °C for 24 hours 

to determine total organic carbon (TOC). Roots and 

other plant residues were removed, and the 

remaining plant material was removed by flotation in 

0.01 M HCl and sieved at 210 μm. TOC was 

determined in a Carlo Erba Analyzer (CHN-1110) 

coupled to a mass spectrometer (Optima Thermo 

Finnigan Plus Delta). The analyses were carried out 

at the Laboratório Agronômico de Análise de Solo, 

Folha e Água (LAGRO) of the Centro Universitário 

Norte do Espírito Santo of the Universidade Federal 

do Espírito Santo (UFES). Analytical uncertainties 

ranged, on average, from 0.3% to 0.5%. TOC 

contents were expressed in grams per kilogram        

(g kg−1) of dry soil. 

The regression model was adjusted for the 

correlation analysis between the measured variables 

(soil temperature, soil water content, soil density, 

and TOC in areas where the soil was managed with 

no-tillage and minimum tillage) and the CO2 

emission data. Multiple linear regression procedures, 

by the least square method, and ANN were used to 

estimate the CO2 emissions flow for the two soil 

management systems. 

The data were randomly divided into two sets 

to validate the methods and evaluate their 

performance: one for the adjustment of the 

regression model and training of networks (70%), 

and the other for validation of the regression and 

trained networks (30%). According to Ding, Wang, 

and Han (2019), the validation procedure should be 

applied to verify the ability of a neural network to 

produce adequate outputs for inputs that were not 

present during the training. 

The regression model adopted was: 

 

  
 

where Y = CO2 emission flux; T = soil temperature; 

SH = soil water content; SD = soil density; TOC = 

total organic carbon; and βi = estimators of 

parameters to be adjusted. 

Artificial neural networks are indicated for 

estimating non-linear mathematical functions or 

relations. They are a logical computational system 

made up of numerous simple processing layers 

linked together. In each one or more layers, there are 

several units interconnected by a large number of 

connections, usually unidirectional (BRAGA; 

CARVALHO; LUDEMIR, 2000). According to 

Haykin (2007), ANN are based on systems of natural 

𝑌 = 𝛽0 + 𝛽1 ⋅ 𝑇 + 𝛽2 ⋅ 𝑆𝐻 + 𝛽3 ⋅ 𝑆𝐷 + 𝛽4 ⋅ 𝑇𝑂𝐶 

functioning of the human brain. An ANN may 

consist of one or more layers, and each layer can 

contain one or more neurons (single-processing 

units). The input layer only receives the values 

(quantitative or qualitative) of the provided variables 

and transmits them to the intermediate layer. The 

intermediate, or hidden, layer and the output layer 

map the knowledge, processing information with 

their neurons, also called computing nodes. A 

computing node k receives the input signals (xi) and 

assigns weights to them (wki); a sum is obtained by 

adding the inputs multiplied by their respective 

weights and adding a prefixed signal (bk). The result 

of this sum (vk) is subjected to an activation function 

[f (vk)] and provides the output of the neuron (yk). 

The ANN training starts by presenting data 

(input and output variables) to a pre-established, or 

not, structure, depending on the software used. The 

training process starts with random weight values, 

and based on these values, the first output is 

compared with the respective actual value of the first 

observation. The difference between the output 

estimated by the network and the actual value 

generates an error signal that calibrates the weight 

adjustment, thus initiating a new cycle to 

approximate the output to the desired result, i.e., 

minimizing the error (HAYKIN, 2007). The basic 

mathematical model of an artificial neuron is 

presented in Equation 1. 

 

                           
 

where yk = output of the artificial neuron, φ = 

activation function, xm = number of inputs, and wm = 

weight for each m input. 

CO2 emissions were estimated according to 

Ding, Wang, and Han (2019) by training multilayer 

perceptron networks (MLP) that have a universal 

ability to approximate functions. The numerical 

variables were normalized linearly in intervals of 0 

to 1, and the categorical variables were subjected to a 

transformation called codification, i.e., each variable 

received a numerical code that enabled the 

calculation of the artificial neuron. 

The software Neuro 4.0.6 was used in the 

training and validation of ANN. Four ANN were 

trained; three neurons in the input layer, three in the 

hidden layer, and one in the output layer. The 

numerical inputs used were soil temperature (T), soil 

water content (SH), soil density (SD), and TOC, and 

the categorical (non-numerical) variable consisted of 

the two soil management systems (no-tillage and 

minimum tillage). 

The Resilient Propagation RPROP+ training 

was used, with a sigmoidal activation function in the 

hidden and output layers (Equation 2). 

 

  mmk wxy  (1) 



ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE 
LINEAR REGRESSION 

 

E. L. VITÓRIA et al. 

Rev. Caatinga, Mossoró, v. 35, n. 4, p. 964 – 973, out. – dez., 2022 967 

                         ,                

 

where φ = sigmoidal activation function, Ø = the 

parameter estimate that determines inclination of the 

sigmoidal function, and u = function activation 

potential. 

This function was chosen because it is the 

most common used in the construction of ANN 

(DING; WANG; HAN 2019). The Resilient 

Propagation training algorithm represents a variant 

of the backpropagation algorithm (backpropagation 

error) and has the advantage of being able to 

calculate and acquire information about a given 

problem, because its weight adjustment depends 

more on the signal of error gradients and it is more 

efficient and recommended for ANN of the MLP 

type. 

The criterion for finishing the training of 

networks was defined according to Leal et al. (2015), 

i.e., a total number of cycles of 3,000 or a mean 

square error of less than 1%. The training was 

finished when one of the criteria was reached. 

The significance of the coefficients of each 

model tested was evaluated by the Student's t test at 

5% significance level. Then, Pearson's linear 

correlation coefficient (r) and coefficient of 

determination (R2) were calculated for the estimated 

and observed values. The significance of r was 

evaluated by the Student's t test at 5% significance 

level. The mean absolute error (MAE), root mean 

square error (RMSE), and Willmott's d index 

(Equations 3, 4, and 5) were also calculated for each 

model. 

 

                              
 

                   
 

                            
 

where are the estimated CO2 emission values,  
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are the observed CO2 emission values, and is the 

mean of the observed values. Subsequently, the 

Camargo and Sentelhas (CS) index of the product 

between r and d (CS = r × d) was obtained. 

The criterion used to indicate the model that 

best estimates CO2 emissions was the Pearson's 

linear correlation coefficient ( ), with RMSE 

closer to 0, and d and CS indexes closer to 1. 

The network configurations and analyses 

were carried out using the specific neural network 

tool of the software IBM-SPSS 22. The dataset was 

pre-processed in an Excel spreadsheet. 

 

 

RESULTS AND DISCUSSION 
 

The mean, minimum, maximum, standard 

deviation, and results of the normality test of CO2 

emission flux, soil temperature, soil water content, 

soil density, and TOC in each soil management 

system are presented in Table 1. The descriptive 

analysis allowed to explore and analyze the values of 

variables and verify the existence of outliers or 

discrepant values, as well as their influence on data 

of position and dispersion measurements; therefore, 

when identified, discrepant values were eliminated 

from the analysis. 

None of the variables presented normal 

distribution by the Shapiro-Wilk test at 5% 

significance. In the no-tillage system, soil 

temperature, soil density, and TOC presented low 

variability in relation to the mean; CO2 emissions 

and soil water content presented intermediate 

variability, according to the classification: low for 

CV <12%, intermediate for 12% < CV < 60%, and 

high for CV> 60%. In the minimum-tillage system, 

soil temperature and density presented low 

variability in relation to the mean, and other 

variables presented intermediate variability. 

Table 2 shows the correlation level 

between the variables analyzed for the no-tillage and 

minimum-tillage systems. The use of soil 

temperature and TOC as predictor variables is 

justified by their significant correlations with CO2 

emission. The increase in these variables results in 

an increase in CO2 emission. TOC showed stronger 

correlation than soil temperature in the no-tillage (r = 

0.79, p<0.05) and minimum-tillage (r = 0.66, 

p<0.05) systems, whereas the correlation between 

temperature and CO2 emissions was 0.58 (p<0.05) 

and 0.47 (p 0.05) for the no-tillage and minimum 

tillage systems, respectively. Soil water content also 

showed significant correlation in no-tillage (r = 

−0.58, p<0.05) and minimum tillage (r = −0.47, 

p<0.05). 

c

ccr ˆ



ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE 
LINEAR REGRESSION 

 

E. L. VITÓRIA et al. 

Rev. Caatinga, Mossoró, v. 35, n. 4, p. 964 – 973, out. – dez., 2022 968 

Unlike TOC and temperature, increases in 

soil water content decreases CO2 emission, thus 

conferring negative values for the correlation. Soil 

temperature, soil water content, and TOC are simple 

to obtain, with a relatively low cost. Total organic 

carbon is the most important variable to be correlated 

to soil CO2 emission, which is positively affected by 

increases in TOC. The soil biological activity is 

connected to TOC contents (ZHANG et al., 2019). 

Soil management systems that maintain soil cover 

have positive correlation between annual soil 

respiration and organic carbon; therefore, CO2 

emissions are affected (ZHANG et al., 2019, 

VAZQUEZ et al. 2019, NIKOLENKO et al., 2019). 

The maximum CO2 emission was observed in 

the minimum-tillage (6.01 μmol m-2), and the 

minimum was observed in the no-tillage system; 

however, there was no significant difference between 

the means of CO2 emissions in the different 

management systems. In the experimental period, the 

region where the experiment was carried out 

underwent a severe water crisis, which contributed to 

the occurrence of significant differences in CO2 

emissions and in the other variables analyzed. 

Different studies have reported controversial data on 

soil CO2 emission.  Chaplot et al. (2012) and 

Buragienė et al. (2019) found lower CO2 emissions 

for no-tilled and minimally tilled soils when 

compared to tilled soil areas. Huang et al. (2018), 

Xavier et al. (2019), Wang et al. (2020), and Shakoor 

et al. (2021) found higher CO2 emissions for no-

tillage systems. 

The type of soil preparation for planting 

affects soil characteristics, depending on the 

different soil preparation technologies used and 

experimental year, in the same way as before the soil 

preparation. Therefore, soils managed in the same 

way for subsequent years present different 

Table 1. Descriptive statistics of soil CO2 emissions (C-CO2), soil temperature (T), soil water content (SH), soil density 

(SD), and total organic carbon (TOC) (g kg−1) areas under no-tillage (NTS) and minimum tillage (MTS) management 

systems. 

Management 

system 
Variable Minimum Mean Maximum CV (%) W 

NTS 

C-CO2 (μmol m−2) 0.88 2.30a 5.98 37.0 0.043* 

T (°C) 27.6 32.4a 38.0 10.3 0.040* 

SH (m³ m−³) 0.040 0.107a 0.163 12.1 0.032* 

SD (g cm−3) 1.22 1.37a 1.48 7.71 0.015* 

TOC (g kg−1) 8.23 15.30a 24.2 10.6 0.022* 

MTS 

C-CO2 (μmol m−2) 0.92 2.25a 6.01 40.2 0.049* 

T (°C) 26.9 35.7a 38.8 11.2 0.051* 

SH (m³ m−³) 0.040 0.093a 0.156 15.0 0.025* 

SD (g cm−3) 1.26 1.43a 1.47 7.69 0.019* 

TOC (g kg−1) 8.25 12.3b 26.1 12.7 0.005* 

 1 
CV - coefficient of variation; W - Shapiro-Wilk normality test. 

Means followed by the same letter do not differ by the Tukey's test (p<0.05) comparing the same variable between the 

different soil managements. 

*non-normal distribution. 

Table 2. Pearson's correlation coefficients for soil CO2 emissions (C-CO2), soil temperature (T), soil water content (SH), 

soil density (SD), and total organic carbon (TOC; g kg−1) in areas under no-tillage and minimum-tillage management 

systems. 

No-tillage system 

 C-CO2 T SH SD TOC 

C-CO2 1     

T 0.58* 1    

SH −0.25* 0.58* 1   

SD 0.15ns −0.25* −0.40* 1  

TOC 0.79* 0.15ns 0.11ns −0.30ns 1 

Minimum-tillage system 

 C-CO2 T SH SD TOC 

C-CO2 1     

T 0.63* 1    

SH −0.31* 0.47* 1   

SD 0.19ns −0.25ns −0.36* 1  

TOC 0.66* 0.18ns 0.18ns −0.22ns 1 

 1 
*Significant by the t test (p<0.05). 
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temperature variation, TOC, and CO2 emissions 

when compared to recent soil preparation systems. 

Significant differences were found between soil 

temperatures and the results presented this trend, 

corroborating the results found by Buragienė et al. 

(2019). 

The coefficients of the adjusted equations 

found for the two soil management systems are 

shown in Table 3. The coefficients β1 and β4 found 

for soil temperature and TOC were significant for 

CO2 emission in both no-tillage and minimum-tillage 

systems; the high β4 indicated a higher effect of 

organic carbon than soil temperature. The low soil 

mobilization in these managements protects the soil 

from degradation. In addition, the maintenance of 

crop residues on the soil surface increases the soil 

organic matter content (SILVA et al., 2016; SILVA 

et al., 2019). 

The β2 and β3 coefficients found for soil 

water content and soil density were not significant. 

The correction coefficient between observed and 

estimated values was 0.706 for the dataset used in 

the adjustment, and 0.691 for the dataset used in the 

validation. The estimates were statistically equal to 

the values observed by the t test; thus, the model 

used is efficient for estimating the dependent 

variable (CO2 emission) as a function of the 

independent variables (soil temperature and TOC). 

Table 3. Adjustment parameters and statistics of the multiple linear regression model used in the estimation of CO2 

emission.  

Management system β0 β1 β2 β3 β4 

Adjustment Validation 
 

t test 
r cc ˆ  

RMSE 

(%) 
r cc ˆ  RMSE % 

NTS 5.325* 0.021* −2.832ns 0.066ns 0.165* 
0.706 18.193 0.691 18.424 0.232ns 

MTS 6.023* 0.033* −3.118ns 0.102ns 0.213* 

 1 
NTS = no tillage system; MTS = minimum tillage system; β0, β1, β2, β3, and β4 = regression coefficients; r  = correlation 

between observed and estimated CO2 emissions; RMSE = root mean square error in percentage; NS = not significant 

(p<0.05).  

cc ˆ

The residual dispersion graphs of the multiple 

linear regression model showed that the dynamic of 

the equation was similar for both adjustment and 

validation, with values properly distributed; 

however, an overestimation trend was observed for 

high CO2 values. Most error frequencies were 

between −20% and 20% error, which can be 

considered a reasonable and acceptable distribution 

(Figure 1). 

The four trained networks presented similar 

statistical precisions for both correlation and 

RMSE% in the training and validation (Table 4). 

 

 

 1 Figure 1. Observed versus estimated CO2 emissions and residue for estimates obtained through the multiple regression 

model. 
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The observed and estimated values were 

statistically equal by the t test, showing the accuracy 

of the estimates found through the four ANN. 

However, those of ANN 1 were slightly higher in the 

training when compared to the others, presenting the 

highest correlation coefficient (0.863) and lowest 

RMSE (9.12%), as well as in the validation, also 

presenting the lowest RMSE (9.47%). Thus, the 

graphs of observed versus estimated CO2 emissions 

and residues were evaluated for ANN 1 (Figure 2).  

Table 4. Statistical precisions of artificial neural networks (ANN) trained for estimating CO2 emission. 

ANN 

Training Validation 

t test 

r cc ˆ  RMSE% r cc ˆ  RMSE% 

1 0.863 9.12 0.849 9.47 0.238ns 

2 0.849 9.17 0.848 9.51 0.253ns 

3 0.851 9.23 0.849 9.49 0.227ns 

4 0.862 9.34 0.847 9.59 0.292ns 

 1 
r  = correlation between observed and estimated CO2 emissions; RMSE% = root mean square error (%); NS = not 

significant (p<0.05).  

cc ˆ

 

 

 1 Figure 2. Observed versus estimated CO2 emissions and residue for the estimates obtained through ANN 1. 

ANN 1 presented the best training and 

validation statistics and similar dynamics to the 

estimates obtained through regression, considering 

the observed versus estimated values and distribution 

of residuals as a percentage of errors for the 

adjustment and validation. Thus, both techniques are 

efficient for estimating CO2 emission. However, the 

Pearson's correlation coefficient and RMSE obtained 

through the network for both training and validation 

were higher than the multiple linear regression, 

indicating that ANN offer higher accuracy. Table 5 

presents a summary of the statistical indicators of the 

two modeling techniques used. 

Although the two techniques presented 

discrepant statistical indicators, the Camargo and 

Sentelhas indexes indicated that the ANN modeling 

is more accurate than the multiple linear regression 

model; the closer to 1, the better the 

representativeness of these indexes when compared 

to the other models. Unlike the multiple linear 

regression model, which was adjusted as a function 

of each soil management, there was no data 

stratification for the network training, which is a 

great differential of ANN. The possibility of 

inserting categorical (non-numerical) variables in the 

adjustment generated precise and unbiased results. 
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Vedaraman et al. (2017), Rubio and Detto 

(2017), and Thangavel et al. (2018) evaluated soil 

CO2 emissions through neural networks under 

different conditions from those of the present work; 

the results were similar regarding the better 

efficiency of the ANN model, compared to other 

mathematical or statistical modeling processes. The 

higher accuracy of neural networks, when compared 

to linear models, is related to several factors, such as 

the dimensioning and precision of data collection 

(BURAGIENĖ et al., 2019; DIAO et al, 2021; 

BELCAVELLO et al., 2022), number of predictor 

variables, possibility of merging quantitative and 

qualitative variables in the same model (SARKAR; 

MISHRA, 2018), and possibility of a better training 

of neural networks due to the number of neurons 

used and number of hidden layers (FERNANDES et 

al., 2019; DENG et al., 2020; JEREMIAH et al., 

2021; LACERDA et al., 2022). 

 

 

CONCLUSIONS 
 

Artificial neural networks are more accurate 

for determining correlations between CO2 emissions 

and soil temperature, soil water content, soil density, 

and soil organic carbon content when compared to 

results of mixed linear regression. The approach of 

soil CO2 emissions by artificial neural network 

simulation techniques is a useful and effective tool. 

CO2 flux from the soil to the atmosphere can be 

modeled with high accuracy; deep artificial neural 

networks may have higher efficiency in similar 

works. These results show a good potential of this 

methodology to be applied in this type of problem. 
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