
Rev. Caatinga, Mossoró, v. 35, n. 4, p. 925 – 935, out. – dez., 2022 

Universidade Federal Rural do Semi-Árido 
Pró-Reitoria de Pesquisa e Pós-Graduação 

https://periodicos.ufersa.edu.br/index.php/caatinga 

ISSN 0100-316X (impresso) 
ISSN 1983-2125 (online) 

http://dx.doi.org/10.1590/1983-21252022v35n420rc 

925 

MANAGEMENT ZONES DESIGN FOR SOYBEAN CROP USING PRINCIPAL 

COMPONENTS AND GEOSTATISTICS1 
 

 
RICARDO NIEHUES BUSS2, RAIMUNDA ALVES SILVA2, OSVALDO GUEDES FILHO3, 

GLÉCIO MACHADO SIQUEIRA2* 

 

 

ABSTRACT - In precision agriculture, determining management zones for soil and plant attributes is a 

complex process that requires knowledge of several variables, which complicates management and decision-

making processes. This study evaluated the spatial variability of soybean yield and soil chemical properties 

using geostatistical and multivariate analyses to define management zones in an Oxisol. The soybean yield and 

soil chemical properties between 0 to 0.2 and 0.2 to 0.4 m soil depths were sampled at 70 points. Geostatistical 

and multivariate analyses were then performed on these data. The soil chemical properties showed higher 

variability at 0.2 to 0.4 m soil depth. The semivariogram parameters of the principal component analysis (PCA) 

data (PCA 1, PCA 2, and PCA 3) for both depths were more homogeneous than the original data. The maps of 

soil chemical properties showed high similarity to the soybean yield map. The PCA explained 65.34% (0 to 0.2 

m) and 70.50% (0.2 to 0.4 m) of data variability, grouping the soybean yield, organic matter, pH, phosphorous, 

potassium, calcium, magnesium, and sodium. PCA spatialization allowed for the definition of management 

zones indicated by PCA 1, PCA 2, and PCA 3 for both depths. The result indicates that the area must be 

managed using different strategies of soil fertility management to increase soybean yield.  

 

Keywords: Principal components analysis. Semivariogram. Soil chemical properties. Crop yield. Precision 

agriculture. 

 

 

DELINEAMENTO DE ZONAS DE MANEJO PARA A CULTURA DA SOJA POR MEIO DE 

COMPONENTES PRINCIPAIS E GEOESTATÍSTICA 

 

 

RESUMO - Na agricultura de precisão a determinação de zonas de manejo dos atributos de solo e planta, é um 

processo complexo que demanda o conhecimento de muitas variáveis, o que dificulta o processo de gestão e 

tomada de decisão. Este estudo avaliou a variabilidade espacial da produtividade da cultura da soja e de 

atributos químicos do solo por meio de análise multivariada e geoestatística para a determinação de zonas de 

manejo específico em um Latossolo. A produtividade de soja e os atributos químicos do solo nas camadas 0-0.2 

e 0.2-0.4 m de profundidade foram amostrados em 70 pontos de amostragem. Análises geoestatísticas e 

multivariadas foram então realizadas. As propriedades químicas do solo apresentaram maior variabilidade na 

profundidade de 0,2 a 0,4 m. Os parâmetros do semivariograma dos dados da análise de componentes 

principais (PCA) (PCA 1, PCA 2 e PCA 3) para ambas as profundidades foram mais homogêneos do que os 

dados originais. Os mapas de propriedades químicas do solo apresentaram alta similaridade com o mapa de 

produtividade da soja. A ACP explicou 65,34% (0 a 0,2 m) e 70,50% (0,2 a 0,4 m) da variabilidade dos dados, 

agrupando a produtividade da soja, matéria orgânica, pH, fósforo, potássio, cálcio, magnésio e sódio. A 

espacialização do PCA permitiu a definição das zonas de manejo indicadas pelo PCA 1, PCA 2 e PCA 3 para 

ambas as profundidades. O resultado indica que a área deve ser manejada utilizando diferentes estratégias de 

manejo da fertilidade do solo para aumentar a produtividade da soja. 

 

Palavras-chave: Análise de componentes principais. Semivariograma. Propriedades químicas do solo. 

Produtividade das culturas. Agricultura de precisão.  
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INTRODUCTION 
 

In Brazil, agribusiness makes a significant 

contribution to the national economy, with soybeans 

as the main agricultural commodity. The mean 

soybean yield in Brazil is 3,000 kg ha-1, cultivated in 

an area of 41 million hectares. However, in the state 

of Maranhão alone, the mean yield is 3,300 kg ha-1 

cultivated in 1 million hectares (CONAB, 2022).  

Several studies have examined the spatial 

variability in soybean yield (CAMBARDELLA et 

al., 1994; SILVA et al., 2010; VIEIRA et al., 2010; 

LIMA et al., 2013; SIQUEIRA et al., 2015a; 

GAVIOLI et al., 2016; BUTTAFUOCO et al., 2017; 

FREDDI et al., 2017; BUSS et al., 2019; JIANSHU, 

2019). According to Vieira (2000), some soil natural 

variability always exists but may be altered by soil 

use and management. Siqueira et al. (2015a) stated 

that fertilizer application in agriculture increases the 

variability of soil properties and that management 

zone definition requires the use of methods involving 

a greater number of properties that vary in time and 

space. 

GuedesFilho et al. (2010) found a common 

standard of spatial variability when evaluating crop 

yield maps in long-term experiments. However, in 

some years, the spatial variability of crop yield was 

aleatory. Vieira et al. (2010) reported that the spatial 

variability of nutrient export by plants is not 

homogeneous, although soil fertility is also managed. 

However, it is necessary to understand the spatial 

variability dynamics of crop yields and soil chemical 

properties using mathematical models that can 

integrate a greater number of variables. 

Multivariate analysis describes the variance 

and covariance structure of variable groups by 

constructing linear combinations and reducing the 

number of dimensions (JEFFERS, 1978; SILVA et 

al., 2010; LIMA et al., 2013; BUSS et al., 2019). 

Therefore, studies involving the application of 

geostatistical and multivariate techniques provide a 

multidimensional understanding and higher accuracy 

in defining management zones. Alarcón-Jiménez et 

al. (2015) used a multivariate analysis of soil 

physical properties and corn yield to establish 

management zones. Córdoba et al. (2016) presented 

a geostatistical and multivariate analysis protocol to 

determine management zones using soil and crop 

yield data. 

Multiple approaches (geostatistical and 

multivariate analysis) have been used by researchers 

to describe the spatial variability in plants and soils 

(SILVA et al., 2010; SILVA; LIMA, 2012; LIMA et 

al., 2013; GAVIOLI et al., 2016; BUTTAFUOCO et 

al., 2017; FREDDI et al., 2017; MASOUD et al., 

2018; OUMENSKOU et al, 2018; 

URIBEETXEBARRIA et al., 2018; BUSS et al., 

2019), demonstrating its importance. 

The objective of this study was to evaluate the 

spatial variability in soybean yield and soil chemical 

properties using geostatistical and multivariate 

analyses to define management zones. 

 

 

MATERIAL AND METHODS 
 

The study area is in Mata Roma municipality, 

Maranhão State, Brazil (3º 70’ 80.88″ S e 43º 18’ 

71.27″ W), with a median altitude of 103 m. The 

regional climatic classification is Aw, warm and 

humid, with two well-defined seasons: rainy 

(December–May) and dry (June–November). The 

annual mean precipitation is 1,835 mm, and the 

mean temperatures in summer and winter are 26.5 

and 28 °C, respectively (Figure 1a). 

The soil area is Oxisol (SANTOS, et al., 

2018), which has a clayey texture. The soil 

characteristics are presented in Table 1. The area has 

been cultivated with soybean (Glycine max L.) and 

corn (Zea mays L.) in crop rotation without irrigation 

under no-tillage since 2008. The total area is 44.75 

ha (Figure 1b). The crop yield and soil were sampled 

after soybean harvest (2015/2016) at 70 regular 

sampling areas of 100 × 35 m. Sampling points were 

referenced using a static GPS with post-processed 

differential correction (static DGPS) (Figure 1b).  

a) 

 

b) 

 

 
Figure 1. Climate parameters (a) and map with level difference and location of sampling points in area (b). 
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Soybean yield (kg ha-1) was determined on 

April 20, 2016 in plots of 18 m2. After harvest, the 

grains were oven-dried at 65 °C and weighed after 

attaining a constant mass. 

Disturbed soil was sampled at soil depths 

between 0 to 0.2 and 0.2 to 0.4 m to determine the 

following chemical properties: organic matter (OM, 

g dm-3), pH CaCl2, potential acidity (H+Al,                

mmolc dm-3), phosphorus (P, mg dm-3), potassium 

(K, mmolc dm-3), calcium (Ca, mmolc dm-3), 

magnesium (Mg, mmolc dm-3), sodium (Na,             

mmolc dm-3), cation exchange capacity (CEC,      

mmolc dm-3), base sum (BS, mmolc dm-3), base 

saturation (V%), copper (Cu, mg kg-1), iron (Fe, mg 

kg-1), manganese (Mn, mg kg-1), and cadmium (Cd, 

mg kg-1), following procedures mentioned in Raij et 

al. (2001). 

Data were analyzed using descriptive 

statistics with the help of R 3.3.1 (R CORE TEAM, 

2018), and the following measures were determined: 

mean, variance, standard deviation, coefficient of 

variation, asymmetry, kurtosis, and D (maximum 

deviation in relation to normal distribution, using the 

Kolmogorov-Smirnov test with error probability of 

0.01). 

The assumptions of the intrinsic hypothesis of 

geostatistics were considered for modelling and 

adjusting the experimental semivariogram according 

to Vieira (2000), obtaining the following parameters 

using the jackknifing technique: C0 (nugget effect), 

C0 +C1 (sill), and a (range, m). 

Scaled semivariograms were adjusted to 

evaluate the spatial variability pattern of pairs of 

variable variances (Equation 1) (VIEIRA et al., 

1997). This allows for the overlap of variables with 

different scalar magnitudes by the standardization of 

semivariance pairs, as described by Siqueira et al. 

(2015b). 

 

                               
 

where: 

𝑦𝑠𝑐(ℎ) =
𝑦(ℎ)

𝑉𝑎𝑟 (𝑧)
 (1) 

ysc(h) is the scaled semivariogram; 

y(h) is the original semivariogram; 

Var(h) is the data variance. 

The spatial dependence ratio (SDR) among 

the samples was determined as previously described 

by Cambardella et al. (1994), which is classified as 

low (75–100%), medium (25–75%), and high (0–

25%). 

Multivariate analysis (principal component 

analysis, PCA) was used to analyze soil and plant 

data, taking into account the null mean and unitary 

variance, using the software Statistica 12.0 

(STATSOFT, 2015). Data were initially standardized 

(mean = 0 and standard deviation = 1) to the original 

data of the same magnitude, once all evaluated 

variables had different orders of magnitude. With 

this standardization, it was possible to perform the 

PCA. 

PCA was performed using the correlation 

matrix between standardized variables (JEFFERS, 

1978), allowing collinearity determination, which 

contributes to reducing variable dimensionalities 

(BUSS et al., 2019) by the orthogonal linear 

recombination of variables (JEFFERS, 1978). From 

the correlation matrix between standardized 

variables, the place of each variable with collinearity 

was determined in a covariance matrix. 

For the PCA biplot graph, a set of 

eigenvectors (PC 1, PC 2,..., PC h) was included, 

which explained more than 60% of the data 

variability, and the variance of each main component 

was calculated using Equation 2: 

 

                                  
 

where: 

CPh = principal component h; 

λh = eigenvalue h; and, 

C = covariance matrix; trace (C) = λ1 + λ2 + ... + λh. 

For each eigenvalue (PC1, PC2, ..., PCh) that 

explained more than 60% of the data variability, 

outliers were checked using the Hotelling T2 

𝐶𝑃ℎ =
𝜆ℎ

(𝐶)
100 (2) 

Table 1. Physical and chemical characterization of the soil of the area cultivated with soybean under no-tillage. 

0–0.2 m 

Sand Silt Clay BD Macro Micro TP OM pH P K Ca Mg CEC 

-------- g kg-1 ----------- Mg gm-3 --------- m3 m-3 --------- g dm-3 
 

mg dm-3 ---------- mmolc dm-3 ---------- 

745.58 138.21 117.14 1.27 0.17 0.38 0.55 22 5 49 0.7 18 3 46.7 

0.2–0.4 m 

Sand Silt Clay SD Macro Micro TP OM pH P K Ca Mg CEC 

-------- g kg-1 --------- Mg m-3 --------- m3 m-3 ---------- g dm-3 
 

mg dm-3 ---------- mmolc dm-3 ---------- 

737.77 141.70 120.63 1.29 0.16 0.37 0.53 19 4.7 47 0.5 17 3 45.6 

 
BD, bulk density; Macro, macroporosity; Micro, microporosity; TP, total porosity; OM, organic matter; CEC, cation 

exchange capacity.  
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technique. The validation was performed considering 

the quadratic sum of the forecast errors [SPE(Q)]. 

After validating the PCA, the scores of each 

eigenvalue were determined to further examine 

spatial variability using the experimental 

semivariogram and scaled semivariogram 

adjustment. Maps of spatial variability were obtained 

using kriging interpolation and performed on 

SURFER 12 (GOLDEN SOFTWARE, 2014). 

 

 

RESULTS AND DISCUSSION 
 

The mean yield in the area was                      

3,770.01 kg ha-1 (Table 2), and is 13.21% above the 

mean yield of Maranhão (3,330 kg ha-1) and 25.66% 

above that of the national mean yield (3,000 kg ha-1) 

(CONAB, 2022). Our results were higher than those 

of Freddi et al. (2017), who found a soybean yield of 

3,280 kg ha-1 in an Oxisol located in the Cerrado and 

Amazônian Forest ecotones. 

The organic matter content was higher in the 

surface layer (12.64 g dm-3) than in the subsurface 

(11.08 g dm-3). In no-tillage, the high values of OM 

in the surface layer are attributed to the absence of 

mobilization and accumulation of crop residues 

during cultivation. Our OM results corroborate those 

found by Lima et al. (2013), Buttafuoco et al. (2017), 

Freddi et al. (2017), Silva and Siqueira (2020), and 

Siqueira et al. (2022).  

Table 2. Descriptive statistics of soil chemical attributes at 0.0–0.2 m and 0.2–0.4 m depth cultivated with soybean. 

 
Mean Variance SD CV (%) Skew Kurtosis D* 

 
0.0–0.2 m 

Soybean yield 3770.71 189447 435.25 11.54 0.11 −0.50 0.065n 

OM 12.64 35.36 5.95 0.47 1.15 1.43 0.194Ln 

pH 5.12 0.34 0.58 0.11 −0.09 −0.05 0.074n 

P 10.87 55.21 7.43 0.68 2.21 6.80 0.193n 

K 1.88 2.01 1.42 0.75 1.42 0.51 0.329Ln 

Ca 14.51 27.08 5.20 0.36 2.44 9.53 0.191n 

Mg 4.94 9.56 3.09 0.63 0.59 −0.38 0.185n 

H+Al 20.77 16.50 4.06 0.20 −0.15 −0.46 0.101n 

Na 3.53 0.50 0.71 0.20 0.46 −0.62 0.101n 

CEC 45.63 69.92 8.36 0.18 1.74 4.34 0.161n 

BS 24.86 64.71 8.04 0.32 1.36 2.77 0.121n 

V% 53.70 93.67 9.68 0.18 0.02 −0.52 0.054n 

Cu 0.11 0.01 0.08 0.71 0.80 −0.15 0.154n 

Fe 15.15 136.33 11.68 0.77 1.51 4.25 0.103n 

Mn 0.44 0.11 0.33 0.75 0.72 −0.19 0.129n 

Cd 0.01 0.00 0.01 0.74 0.66 −0.22 0.141n 

 
0.2–0.4 m 

OM 11.08 15.83 3.98 0.36 1.45 1.53 0.189n 

pH 4.76 0.18 0.43 0.09 0.02 −0.14 0.123n 

P 11.34 190.98 13.82 1.22 3.58 14.87 0.295Ln 

K 1.31 0.22 0.47 0.36 4.68 29.93 0.224n 

Ca 13.40 22.42 4.73 0.35 0.78 0.25 0.125n 

Mg 4.35 6.08 2.47 0.57 0.37 −0.45 0.135n 

H+Al 23.24 35.88 5.99 0.26 0.59 −0.32 0.091n 

Na 3.61 0.47 0.69 0.19 0.15 −0.90 0.099n 

CEC 45.78 50.19 7.08 0.15 0.62 −0.19 0.111n 

BS 22.54 37.88 6.15 0.27 0.79 0.42 0.105n 

V% 49.15 108.10 10.40 0.21 0.27 −1.27 0.140n 

Cu 0.18 0.02 0.15 0.83 4.24 23.67 0.265Ln 

Fe 33.83 200.92 14.17 0.42 1.36 2.00 0.183n 

Mn 0.34 0.09 0.30 0.87 3.07 12.51 0.212n 

Cd 0.01 0.00 0.01 0.71 0.59 −0.39 0.087n 

 
OM: organic matter (g dm-3); pH in CaCl2; P: phosphorus (mg dm-3); Cu: copper (mg dm-3); Fe: iron (mg dm-3); Mn: 

manganese (mg dm-3); Cd: cadmium (mg dm-3); K: potassium (mmolc dm-3); Ca: calcium (mmolc dm-3); Mg: 

magnesium (mmolc dm-3); H+Al: hydrogenj + aluminum (mmolc dm-3); Na: sodium (mmolc dm-3); CEC: cation 

exchange capacity (mmolc dm-3); BS: base sum (mmolc dm-3); V%: base saturation (%); n: normal frequency 

distribution and Ln: log-normal frequency distribution, according to the Kolmogorov-Smirnov test at p ≤ 0.01 (D).  
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The pH and macro and micronutrients 

presented high values in surface layer than in 

subsurface (Table 2), which reflects the 

concentration of fertilizers and correctives in this 

layer in a no-tillage system (LIMA et al., 2013). The 

CEC values for both depths indicated the area with 

media/high fertility, according to Sobral et al. (2015) 

(CEC > 40%). 

The chemical attributes showed low 

coefficient of variation (CV < 12%) (WARRICK; 

NIELSEN, 1980) indicating a low variation in the 

area, which does not mean that there is no spatial 

variability in the area. Geostatistical analysis allows 

us to describe the scales of variability that are not 

detected by classic statistics. Asymmetry, kurtosis, 

and Kolmogorov-Smirnov tests indicated that 

chemical attributes (both depths) and yield had a 

generally normal frequency distribution.  

The variables H+Al, CEC, and Cd at 0–0.2 m 

soil depth and P, H+Al, BS, V%, Cu Mn and Cd at 

0.2–0.4 m soil depth presented a pure nugget effect 

(PNE) (Table 3), which means that the spatial 

variability of these variables occurred at a lower 

scale than the smaller distance between the sampling 

points. The spherical model was adjusted for 

soybean yield, OM, Ca, and Fe at the 0–0.2 m soil 

depth, while pH, Na, V%, and Mn were adjusted to 

the exponential model. The other variables were 

adjusted using a Gaussian model. At the 0.2–0.4 m 

soil depth, the exponential model was adjusted to 

OM, K, Ca, Na, CEC, and Fe, whereas the Gaussian 

model was adjusted to pH and Mg. Similar results 

were reported by Lima et al. (2013), Tripathi et al. 

(2015), and Bitencourt et al. (2016).  

Table 3. Semivariogram adjustment parameters for soybean yield and soil chemical properties at 0–0.2 m and 0.2–0.4 m 

soil depth under no-tillage system.  

Variables Model C0 C0+C1 a r2 RSS SDR 

0–0.2 m 

Soybean yield Spherical 145000 250160 200 0.724 35.6 57.96 

OM Spherical 7.1 39.65 265 0.818 293 17.91 

pH Exponential 0.0369 0.338 220 0.243 0.752 10.92 

P Gaussian 0.100 48.88 51 0.752 391 0.20 

K Gaussian 0.263 2.046 52 0.714 0.653 12.85 

Ca Spherical 0.01 31.42 72 0.220 564 0.03 

Mg Gaussian 0.710 9.68 46 0.772 8.73 7.33 

H+Al Pure nugget effect 

Na Exponential 0.001 0.534 50 0.772 0.028 0.19 

CEC Pure nugget effect 

BS Gaussian 0.100 67.02 46 0.614 1175 0.15 

V% Exponential 12.2 95.1 20 0.089 1939 12.83 

Cu Gaussian 0.00001 0.0056 66 0.865 3.94E-06 0.18 

Fe Spherical 8.8 147.7 194 0.832 2844 5.96 

Mn Exponential 0.0001 0.124 117 0.927 8.460E-04 0.08 

Cd Pure nugget effect 

0.2–0.4 m 

MO Exponential 1.14 17.63 109 0.878 37.9 6.47 

pH Gaussian 0.0001 0.179 47 0.787 3.03E-03 0.06 

P Pure nugget effect 

K Exponential 0.0001 0.179 49.9 0.406 0.0105 0.06 

Ca Exponential 2.31 22.22 36.1 0.814 20.4 10.40 

Mg Gaussian 0.49 5.705 57 0.456 4.16 8.59 

H+Al Pure nugget effect 

Na Exponential 0.184 0.491 63 0.635 0.0382 37.47 

CTC Exponential 0.5000 50.52 49 0.876 258 0.99 

SB Pure nugget effect 

V% Pure nugget effect 

Cu Pure nugget effect 

Fe Exponential 22 201.9 28 0.247 7480 10.90 

Mn Pure nugget effect 

Cd Pure nugget effect 

 
OM: organic matter (g dm-3), pH CaCl2, H+Al: potential acidity (mmolc dm-3), P: phosphorous (mg dm-3), K: 

potassium (mmolc dm-3), Ca: calcium (mmolc dm-3), Mg: magnesium (mmolc dm-3), Na: sodium (mmolc dm-3), CEC: 

cationic exchange capacity (mmolc dm-3), BS: base sum (mmolc dm-3), V: base saturation (%), Cu: copper (mg kg-1), 

Fe: iron (mg kg-1), Mn: manganese (mg kg-1), Cd: cadmium (mg kg-1), C0: nugget effect, C0+C1: sill, a: range (m), r2: 

coefficient of regression, RSS: residual sums of squares; SDR: spatial dependence ratio (%). 
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Soybean yield had a range of 200 m, while 

OM, pH, P and Mn at 0–0.2 m soil depth, and OM at 

0.2–0.4 m soil depth presented a range of 109–265 

m. The other variables showed a range of < 72 m. 

The range represents the distance at which sampling 

points are spatially dependent on each other 

(VIEIRA, 2000). The variables exhibited higher data 

variability at 0.2–0.4 m soil depth than at 0–0.2 m. 

The soil chemical properties showed high soybean 

yield media spatial dependence ratios (Table 3). 

Bitencourt et al. (2016) found similar values of the 

spatial dependence ratio when studying the chemical 

and physical properties of soil. 

PCA at the 0–0.2 m soil depth had three 

components that explained 65.34% of the total 

variability of the data (PCA 1 = 31.16%, PCA 2 = 

20.87%, and PCA 3 = 13.30%), and were correlated 

with the following eight variables: soybean yield, 

OM, pH, P, K, Ca, Mg, and Na (Table 4). At a 0.2-

0.4 m soil depth, the three components grouped 

(PCA 1 = 37.87%, PCA 2 = 23.61%, and PCA 3 = 

18.01%) explained 70.50% of the total variability of 

the data, and it correlated the following seven 

variables: soybean yield, OM, pH, P, K, Ca, and Na. 

These results are corroborated by Tripathi et al. 

(2015) and Jianshu (2019), who described the 

importance of multivariate analysis to group soil 

properties into principal components that consider 

only the properties that correlate. Therefore, PCA 

allows the grouping of variables even if they have 

presented a pure nugget effect in the preliminary 

geostatistical analysis, and variables related to soil 

natural properties or those affected by soil 

management (JIANSHU, 2019). 

The soil chemical properties that correlated 

with PCA with soybean yield at the 0–0.2 m soil 

depth were K (PCA 1 = 16.30%), OM (PCA 2 = 

15.63%), and P (PCA 3 = 43.27%). At the 0.2–0.4 m 

soil depth, pH (PCA 1 = 28.18%), Na (PCA 2 = 

23.63%), and OM (PCA 3 = 68.64%) contributed 

more to explaining soybean yield variability. OM 

was the only property common to both the soil 

depths. Buttafuoco et al. (2017) stated that OM is 

one of the predominant variables to define 

management zones using geostatistical and 

multivariate analyses, as soil with a higher content of 

organic matter had normally higher CEC and V%. 

Table 4. Principal components for soybean yield and soil chemical properties at the 0–0.2 and 0.2–0.4 m soil depths under 

a no-tillage system.  

 -------------- 0–0.2 m -------------- -------------- 0.2–0.4 m -------------- 

 PCA 1 PCA 2 PCA 3 PCA 1 PCA 2 PCA 3 

% of variance 31.16 20.87 13.30 37.87 23.61 18.01 

Cumulative % 31.16 52.04 65.34 37.87 61.49 70.50 

Eigenvalue 21.50 14.40 9.18 26.51 16.52 12.61 

Variables contributions (%)* 

Soybean yield 24.87 56.26 4.24 30.31 53.83 0.40 

OM 13.97 15.63 0.10 0.00 9.51 68.44 

pH 16.30 7.05 18.97 28.18 2.06 9.38 

P 1.15 12,51 43.27 2.68 0.04 0.44 

K 20.65 3.58 0.61 1.43 7.79 4.04 

Ca 0.16 2.32 0.15 17.87 3.11 0.13 

Mg 9.20 1.24 5.74 - - - 

Na 13.65 1.60 26.88 19.50 23.63 17.13 

 
OM, organic matter; pH, CaCl2; P, phosphorus; K, potassium; Ca, calcium; Mg, magnesium; Na, sodium; * Variable 

contributions based on the correlation matrix of the main components (PCA).  



MANAGEMENT ZONES DESIGN FOR SOYBEAN CROP USING PRINCIPAL COMPONENTS AND GEOSTATISTICS 
 

 

R. N. BUSS et al. 

Rev. Caatinga, Mossoró, v. 35, n. 4, p. 925 – 935, out. – dez., 2022 931 

Maps of spatial variability were constructed 

only for the more representative variables established 

by PCA (Figure 2). The soybean yield map was split 

into two zones: upper half of the area with a yield 

above 2,800 kg ha-1, and lower half with a yield 

between 2,200 and 2,800 kg ha-1 (Figure 2a). The K 

(Figure 2b) and P (Figure 2d) maps did not show 

similarity with the soybean yield, which may be 

attributed to the influence of soil management on 

these soil chemical properties (JIANSHU, 2019). 

The maps of the spatial variability of the other soil 

chemical properties showed high similarity with the 

soybean yield map. This demonstrated the efficiency 

of multivariate analysis in grouping soil variables 

related to yield to define management zones.  

a) Soybean yield (kg ha
-1

) 

 

b) Potassium (0–0.2 m) – mmolc dm
-3

 

 

  

c) Organic matter (0–0.2 m) – g dm
-3

 

 

d) Phosphorous (0–0.2 m) – mmolc dm
-3

 

 

  

e) pH (0.2–0.4 m) 

4  

f) Sodium (0.2–0.4 m) – mmolc dm
-3

 

 

  

g) Organic matter (0.2–0.4 m) – g dm
-3

 

 

 Figure 2. Maps of spatial variability of soybean yield and soil chemical properties at 0––0.2 and 0.2–0.4 m soil depth under 

a no-tillage system.  
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The geostatistical analysis of the eigenvalue 

scores is presented in Table 4. PCA 2 at the 0–0.2 m 

soil depth showed a PNE, and the OM was the 

chemical property that explained most of the data 

variability (15.63%). However, OM was spatially 

related to soybean yield (Figures 2a and 2c) and 

presented a range of 265 m in the preliminary 

geostatistical analysis (Table 3). The other 

eigenvalue scores had an experimental 

semivariogram adjusted by the exponential and 

spherical models with range from 42 m (PCA2 at the 

0.2–0.4 m soil depth) up to 156 m (PCA 1 at the               

0–0.2 m soil depth). Freddi et al. (2017) also fitted 

the exponential and spherical models for the 

principal components and observed the range from 

34.2 to 208.1 m when studying soybean yield and 

soil physical and chemical properties. With regard to 

the SDR, the variables showed high and medium 

spatial dependence (Table 5). 

The scaled semivariogram for the principal 

components at both soil depths (Figure 3) confirmed 

that despite the data semivariograms being fitted to 

different models (exponential and spherical), there is 

homogeneity between variance pairs up to 250 m 

independent of the soil depth (Figure 3). At a 0.2-0.4 

m soil depth, the variables were more stable and 

correlated with each other than at 0-0.2 m soil depth 

(Figure 3b). This indicates that the maps of spatial 

variability were more stable and had patterns of 

similar contour lines.  

Table 5. Semivariogram adjustment parameters of the principal components for soybean yield and soil chemical properties 

at 0–0.2 and 0.2–0.4 m soil depth under no-tillage system.  

 
Model C0 C0+C1 a r2 RSS SDR 

0–0.2 m 

PCA 1 Exponential 0.00004 0.00043 156 0.403 9.07E-09 9.30 

PCA 2 Pure nugget effect 

PCA 3 Spherical 0.00005 0.00153 213 0.834 3.68E-07 3.27 

0.2–0.4 m 

PCA 1 Exponential 0.00042 0.00091 165 0.863 2.88E-08 46.15 

PCA 2 Exponential 0.00012 0.00094 42 0.55 9.25E-08 12.77 

PCA 3 Spherical 0.00007 0.00125 82 0.586 1.22E-07 5.60 

 
C0: nugget effect; C0+C1: sill; a: range (m); r2: coefficient of regression; RSS: residual sum of squares; SDR: spatial 

dependence ratio (%).  

a) 0–0.2 m 

 

b) 0.2–0.4 m 
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Figure 3. Scaled semivariogram of principal components for soybean yield and soil chemical properties at 0–0.2 and               

0.2–0.4 m soil depth under a no-tillage system.  

The use of a scaled semivariogram 

demonstrated that PCA is promising for defining 

management zones mainly because the possibility of 

grouping several soil and plant variables in one 

component allows the identification of common 

spatial patterns (VIEIRA et al., 1997; SIQUEIRA et 

al., 2015b; BUSS et al., 2019). However, when PCA 

results from many components are grouped into 

different variables, some data information can be lost 

(JEFFERS, 1978; SILVA et al., 2010). Our PCA 

considers only those components that explain more 

than 60% of the data variability, which indicates the 

efficiency of describing the spatial variability of the 

eigenvalue scores of the components. 
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The map of spatial variability of PCA 1 at the 

0.2–0.4 m soil depth (Figure 4c) did not present 

similar distribution of contour lines with the maps of 

the other components. The pH was the soil property 

that more contributed to explaining the PCA 1 

variability at the 0.2–0.4 m soil depth (Table 4). 

However, its spatial variability map (Figure 2e) did 

not have similarity with the PCA 1 map (Figure 4c). 

The new variable described by PCA 1 included and 

explained the variability that was not considered 

when only geostatistical analysis was performed. 

According to Silva et al. (2010), in principal 

component interpretation, individualized analysis 

must be performed only if the variables are 

independent, and priority must be given to a group of 

variables that explain a component. Therefore, we 

must analyze the components as a whole and identify 

a common variability pattern in all spatial variability 

maps. 

The maps of spatial variability for PCA 

(Figure 4) showed two management zones: one in 

the upper half and the other in the lower half. The 

analysis of the spatial variability maps indicated that 

the new variables that were identified by the 

correlation matrix demonstrated an inverse behavior, 

which means that the upper area presented higher 

values for the components at the 0–0.2 m soil depth 

(Figures 4a and 4b), while the lower side area 

presented high values at the 0.2–0.4 m soil depth 

(Figure 4c, 4d, and 4e). From the analysis of soybean 

yield and principal components, it was observed that 

soybean yield was more influenced by the layers in 

the 0–0.2 m soil depth. Therefore, this soil layer 

must be considered when establishing a management 

zone in an area. 

a) PCA 1 (0–0.2 m) 

 

b) PCA 3 (0–0.2 m) 

 

c) PCA 1 (0.2–0.4 m) 

 

d) PCA 2 (0.2–0.4 m) 

 

e) PCA 3 (0.2–0.4 m) 

 

 
Figure 4. Spatial distribution maps of principal components at 0–0.2 m soil depth [PCA 1 (a) and PCA 3 (b)] and 0.2–0.4 m 

soil depth [PCA 1 (c), PCA 2 (d) and PCA 3 (e)].  
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Overall, the individualized maps of spatial 

variability (Figure 2) and variable maps grouped into 

components (Figure 4) showed similarity in the 

spatial pattern of the contour lines, particularly with 

the yield map (Figure 2a). This validated the 

separation of the areas in the two management zones, 

corroborating the results of Silva et al. (2010), 

Bitencourt et al. (2016), Lima et al. (2013), Tripathi 

et al. (2015), Buttafuoco et al. (2017), and Jianshu 

(2019). 

The spatial analysis of principal components 

allows the construction of maps that are more 

homogeneous when compared to the original data, as 

stated by Silva et al. (2010), Lima et al. (2013), 

Tripathi et al. (2015), and Buss et al. (2019). Maps of 

spatial variability of data analyzed by multivariate 

techniques reduce the dimensionality of the original 

data, which usually have low spatial and temporal 

stability (GAVIOLI et al., 2016). 

Our results demonstrated that PCA, together 

with geostatistical analysis, improved the evaluation 

of the spatial variability of soil chemical properties 

because it reduced the number of maps to be 

analyzed. The combination of these techniques 

improves decision-making related to soil fertility 

management and is an innovation that can be used in 

precision agriculture. 

 

 

CONCLUSIONS 
 

The multivariate analysis grouped the OM, 

pH, P, K, Ca, Mg, and Na with the soybean yield, 

and the three components explained 65.34%                

(0–0.2 m) and 70.5% (0.2–0.4 m) of data variability. 

The maps of spatial variability of principal 

components were similar to the soybean yield map, 

showing the efficiency of the integration of 

geostatistical and multivariate techniques to define 

management zones. 

The management zones defined by PCA 1, 

PCA 2, and PCA 3 confirmed that different 

management strategies were necessary for each soil 

depth in the study area. 
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