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ABSTRACT – Recent researches have shown promising results for the use of orbital data using the 

Normalized Difference Vegetation Index (NDVI) to monitor and predict soybean grain yield. The objective of 

this work was to evaluate propositions of multiple linear regression models to predict soybean grain yield using 

NDVI. The research was carried out at the Celeiro Farm, in Monte Alegre do Piauí, PI, Brazil, in an area of 200 

ha. Five images were collected during the soybean crop cycle: one from the Landsat 8 and four from the 

Sentinel 2. Regression analyses were carried out between grain yield data (predicted variable) extracted from 

harvest maps and spectral data (predictor variables) from NDVI of soybean crops at different developmental 

stages. The promising models were selected by the Akaike Information Criterion (AIC). The models were 

validated using Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (nRMSE), 

considering the mean of soybean yield of the plot. The linear regression models developed with NDVI for the 

V5-V6 and R2 developmental stages showed promising results for the prediction of soybean grain yield, with 

mean error of predictions of 153.9 kg ha-1, representing 4.2% when compared to the data from field measures. 

 

Keywords: NDVI. Crop season forecast. Multiple regression. 

 

 

ESTIMATIVA DA PRODUTIVIDADE DA SOJA POR SENSORIAMENTO REMOTO NA REGIÃO 

SUDOESTE DO PIAUÍ 

 

 

RESUMO – Pesquisas recentes apontam resultados promissores da integração de dados orbitais utilizando o 

índice de vegetação NDVI, para monitorar e estimar a produtividade da soja. O objetivo do trabalho foi avaliar 

a proposição de modelos de regressão linear múltipla para estimativa da produtividade de grãos com uso do 

índice NDVI. A pesquisa foi realizada na Fazenda Celeiro, município de Monte Alegre do Piauí, PI, sendo a 

área de estudo de 200 ha. Foram utilizadas cinco imagens durante o ciclo de cultivo da soja, sendo uma do 

Landsat 8 e quatro do Sentinel 2. Efetuou-se análises de regressão entre dados de produtividade de grãos 

(variável predita), extraídos dos mapas de colheita, e dados espectrais de (variáveis preditoras) oriundos dos 

índices de vegetação (NDVI) de diferentes estádios de desenvolvimento da soja. A seleção dos modelos 

promissores foi efetuada pelo critério de informação de Akaike (AIC). Para validação dos modelos utilizou-se a 

raiz quadrada do erro quadrado médio (RMSE) e a raiz quadrada do erro quadrado médio normalizado 

(nRMSE) pela média da produtividade da soja no talhão. O modelo de regressão linear gerado com o índice de 

vegetação NDVI nos estádios de desenvolvimento V5-V6 e R2, mostrou-se promissor na predição da 

produtividade de grãos de soja, com erro médio de estimativa da ordem de 153,9 kg ha-1, o que representa 4,2% 

em relação aos dados medidos em campo. 

 

Palavras-chave: NDVI. Previsão de safra. Regressão múltipla. 
 

 
 

 

 
 

 

 
 

 

_______________________________ 
*Corresponding author 
1Received for publication in 02/22/2021; accepted in 08/16/2021. 
2Postgraduate Program in Agrarian Sciences, Universidade Federal do Piauí, Bom Jesus, PI, Brazil; thatiane.eng.agronoma@gmail.com – 

ORCID: 0000-0003-0500-0862. 

3Embrapa Meio-Norte, Teresina, PI, Brazil; aderson.andrade@embrapa.br – ORCID: 0000-0002-0619-1851,  

paulofernando.vieira@embrapa.br – ORCID: 0000-0002-5133-3871. 
4Center of Agrarian Sciences, Universidade Estadual do Piauí, Teresina, PI, Brazil; melissasouza@cca.uespi.br – ORCID: 0000-0003-4137

-4298. 

5Universidade Federal do Piauí, Bom Jesus, PI, Brazil; wellingtonjwl@gmail.com – ORCID: 0000-0003-1340-9983. 

mailto:thatiane.eng.agronoma@gmail.com


SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL 
 

 

T. G. ANDRADE et al. 

Rev. Caatinga, Mossoró, v. 35, n. 1, p. 105 – 116, jan. – mar., 2022 106 

INTRODUCTION 
 

Monitoring dynamic systems over large areas 

in annual crops, such as soybean, is challenging. The 

aid of technologies, such as remote sensing, using 

through aerial images has been beneficial in the last 

years; the generation and use of technologies has 

significantly increasing soybean crop yield in Brazil 

(BALBINOT JUNIOR et al., 2018). 

Monitoring the growth and development of 

soybean crops in the field requires information that 

assists in the decision making during the planting, 

management, and cultural practices and in the 

prediction of yields focused on the marketing of the 

production. The use of remote sensing has 

significantly contributed to the agricultural sector, 

providing more accurate data; geotechnologies are 

promising means, in cost-benefit terms, for fast 

collection of reliable information in large areas 

(ATZBERGER et al. 2013; FORMAGGIO; 

SANCHES, 2017). 

Remote sensing is a technique that 

investigates the interaction between electromagnetic 

radiation and different types of targets. Scientific 

advances have enabled the use of satellite images for 

vegetation studies, providing information on 

distribution of different vegetation types, 

phenological state, stress conditions, and nutrient 

deficiencies, thus assisting in the decision making 

during the crop management (MOREIRA, 2003; 

GUEDES; SILVA, 2018). 

The products from orbital data through 

remote sensing techniques include vegetation 

indexes (ROUSE et al., 1973). The use of vegetation 

indexes assists in studies about spectral and temporal 

characteristics of the soybean crop during its 

phenological cycle, and factors that affect its growth, 

development, and yield, such as climate, relief, and 

soil physical and chemical attributes (TRINDADE et 

al., 2019). The Normalized Difference Vegetation 

Index (NDVI) is among the most used indexes for 

monitoring vegetation, which has been widely used 

in scientific researches (MERCANTE et al., 2010; 

GUSSO et al., 2013; TRINDADE et al., 2019; 

SARMIENTO et al., 2020).  

Vegetation indexes enables field 

identifications of nutrient deficiencies (TRINDADE 

et al., 2019) and water stress (SCHIRMBECK et al., 

2019); diagnoses of several biophysical parameters, 

including leaf area index (BERGER et al., 2019), 

soil cover percentage (MACEDO et al., 2020), 

biomass (RODIGHERI et al., 2020), and 

photosynthetic activity (RODRIGUES et al., 2013); 

and predictions of grain yield (MELO et al., 2008; 

BERTOLIN et al., 2017; TRINDADE et al., 2019). 

Studies on prediction models for crop yields 

using vegetation indexes have been conducted since 

the decade of 1990, with proposition of models 

based on only one image, which showed the highest 

correlation between biomass and yield. Recently, 

researches have focused on the monitoring during 

the whole crop cycle (MELO et al., 2008; 

MERCANTE et al., 2010; GUSSO et al., 2013; 

SARMIENTO et al., 2020), searching for more 

accurate information to propose models that predict 

the soybean yield. Thus, the objective of this work 

was to evaluate the fit of multiple linear regression 

models for predicting soybean grain yield based on 

NDVI in a reference Farm in the Cerrado biome in 

the southwestern Piauí State, Brazil. 

 

 

MATERIAL AND METHODS 
 

Characterization of the study area 
 

The study was conducted at the Celeiro Farm, 

in Monte Alegre do Piauí, State of Piauí, Brazil (09°

24'01''S, 45°07'21''W) considering a plot A2 of 402 

ha in an experimental site with effective area of 200 

ha (Figure 1). The region presents an Aw, tropical 

savanna climate, according to the Köppen climate 

classification, with a rainy season from October to 

April and mean annual rainfall depth of 1,200 mm 

(ANDRADE JUNIOR et al., 2004). Climatic data 

(air temperature, relative air humidity, global solar 

radiation, wind speed, and rainfall) were recorded 

daily by an automatic agrometeorological station 

distant 500 m from the experimental plot. The 

predominant soil of the region was classified as a 

Typic Hapludox (Latossolo Amarelo distrófico 

típico; SANTOS, 2018) of loamy-clay-sandy texture. 

Soybean crops were grown in the study area 

was in the 2018/2019 agricultural year from 

November to March. Soybean seeds were sowed on 

November 27, 2018, with spacing of 0.45 m between 

rows for a density of 14 plants per linear meter 

(311,000 plants per hectare). The soil was prepared 

under minimum cultivation system, with sowing on 

the straw of the previous crop (maize). The BMX 

8579 IPRO (Bonus) soybean cultivar was used, 

which belongs to the maturation group 7.9, presents 

indeterminate growth habit, and is resistant to 

lodging (CELEIRO SEMENTES, 2020). 

https://www.scielo.br/scielo.php?pid=S1415-43662019000500330&script=sci_arttext#B9
https://www.scielo.br/scielo.php?pid=S1415-43662019000500330&script=sci_arttext#B9
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Soybean grain yield 

 

All areas of the plot were harvested when the 

soybean crop reached the final maturation stage 

(R9), using harvesters equipped with GNSS to obtain 

the harvest maps of the plot. The harvest maps of the 

plot were developed in vector shapes by a program 

that manages the harvesters.  

The harvest maps were rasterized to enable 

the extraction of yield values of each sampling point, 

using the rasterization tool of the QGIS program. 

Then, the mean grain yield values were extracted for 

each sampling point. A vector layer consisted of 12 

squares with dimensions of 200 × 200 m was used, 

which were defined based on the image of the 

MODIS sensor projected on the experimental plot 

(Figure 1D). The mean grain yield values for 

validation of prediction models were extracted from 

validation points (Figure 1D). 

 

Normalized Difference Vegetation Index (NDVI)  

 

Products from the sensors of the satellites 

Sentinel 2 and Landsat 8 were used to generate the 

NDVI. The images presented high to medium 

temporal resolution (5 days for the Sentinel 2, 15 

days for the Landsat 8), which provided data in short 

to medium time intervals for the research. Twenty 

images covering the whole soybean crop cycle were 

obtained from the site of the United States 

Geological Survey (USGS) (https://

earthexplorer.usgs.gov/) and of European Space 

Agency (ESA) (https://apps.sentinel-hub.com/eo-

browser/). However, only five images were used, 

 
 

  
 1 
Figure 1. Location of the study area. A: Position of the State of Piauí in the map of Brazil; B: Position of Monte Alegre do 

Piauí in the map of Piauí; C: Celeiro Farm and the plot A2; D: Plot A2 highlighting the sampling points used for generation 

(M) and validation (V) of regression models. 



SOYBEAN YIELD PREDICTION USING REMOTE SENSING IN SOUTHWESTERN PIAUÍ STATE, BRAZIL 
 

 

T. G. ANDRADE et al. 

Rev. Caatinga, Mossoró, v. 35, n. 1, p. 105 – 116, jan. – mar., 2022 108 

which presented absence of clouds on the 

experimental plot, one of the Landsat 8 and four of 

the Sentinel 2 (Table 1), since the study was 

conducted in a rainy period, with high cloudiness. 

The QGIS program was used to redesign the images 

for the projection UTM-WGS84-Fuso23S. 

Images of both satellites with level 2 of 

processing, radiometric and geometric corrections, 

and surface reflectance values were used. The image 

of the Landsat 8 was subjected to atmospheric 

correction using the LEDAPS and LaSRC 

algorithms, which correct effects of temporal, spatial 

and spectral dispersion and absorption of 

atmospheric gases, aerosols, and water vapor, and is 

needed for a reliable characterization of the land 

surface (https://www.usgs.gov/core-science-systems/

nli/landsat/landsat-collection-2-level-2-science-

products). The images of the Sentinel 2 were 

corrected using the product level L1, with 

corrections processed through the Sen2cor Sentinel 2 

Toolbox algorithm (https://earth. esa.int/web/

sentinel/toolboxes/sentinel-2). 

Table 1. Data of the satellite images used in the study. 

Dates Satellites Spatial resolution Bands Phenological stage DAS 

Dec 16 Sentinel 2 10 m RED4 / NIR8 V2 19 

Dec 26 Sentinel 2 10 m RED4 / NIR8 V5 and V6 29 

Jan 12 Landsat 8 30 m RED4 / NIR5 R2 46 

Jan 30 Sentinel 2 10 m RED4 / NIR8 R4 64 

Feb 24 Sentinel 2 10 m RED4 / NIR8 R5 89 

 1 aNIR: near infrared; bRED: Red; DAS: Days after sowing. 

The NDVI was acquired through digital 

values from the products provided by the satellites. 

The difference between the detected reflectance in 

the visible and near infrared bands, divided by the 

sum of these values was calculated in the program 

QGIS 2.8.2, as defined by Rouse et al. (1973), 

according to Equation 1: 

 

                                
 

where  is the near infrared reflectance 

(Lansat 8 band 5 and Sentinel 2 band 8); and  

is the red reflectance (Landsat 8 band 4 and Sentinel 

2 band 4). 

 

Models for predicting grain yield and model 

validation 

 

Regressions between grain yield data 

(predicted variable) extracted from harvest maps and 

spectral data (predictor variables) from NDVI were 

analyzed. The mean NDVI and yield grain values 

were extracted from each sampling point (200 ×           

200 m), using the zonal statistics plugin of the QGIS 

2.8.2 program. The modeling was carried out for all 

images obtained, and for images from the beginning, 

medium, and end of the soybean crop cycle. Twelve 

models were tested to evaluate the correlation 

between the predicted and predictor variables, and 

stepwise regression technique was applied to assess 

the importance of predictor variables and which of 

them should be maintained in the model. The 

stepwise regression technique consists in starting the 

 𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅 −  𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷
 (1) 

ρNIR 
ρRED 

adjustment of a reduced model, and iteratively build 

a sequence of regression models including or 

excluding variables, one by one. The inclusion or 

exclusion criterion of variables was based on the 

Akaike Information Criterion (AIC) (AKAIKE, 

1974). 

The performance of the models was evaluated 

based on the coefficient of determination (R2), 

prediction standard error, and on the AIC. The AIC 

establishes a correlation between the information or 

distance of Kullback-Leibler (KULLBACK; 

LEIBLER, 1951), which is a measure of relative 

discrepancy between two models, the true and 

approximate model, and the maximum log-likelihood 

function for selecting the models. The AIC is defined 

by Equation 2: 

 

                 AIC = - 2 LL + 2p                      (2) 

 

where LL is the Neperian logarithm of the 

maximum likelihood function, calculated for the 

prediction values of parameters; and p is the number 

of parameters of the model. The models with lower 

AIC values present better fit. The Shapiro-Wilk test 

was used to assess the normality and the Breusch-

Pagan test were used to assess the heteroscedasticity 

of the data before the regression analysis. The 

analyses were carried out using the R statistical 

program (R CORE TEAM, 2019). 

The linear regression models obtained were 

validated using the NDVI and grain yield values of 

validation sampling points from the harvest map, 

different of points were used for the modeling 

(Figure 1D). The statistical indexes: root mean 

square error (RMSE) and normalized root mean 
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square error square (nRMSE) were used as indicators 

of degree of fitting of the models, considering the 

mean soybean yield values (Equations 3 and 4).  

 

                              
 

where n is the number of observations; Yi is 

the grain yield values found; Yi’ is the grain yield 

values predicted by the models; and  is thee mean 

grain yield value found. 

 

 

RESULTS AND DISCUSSION 
 

Rainfall depths 

 

The rainfall depths recorded during the whole 

soybean crop cycle was 727.0 mm, lower than the 

historical mean of the region (1,200 mm) 

𝑅𝑀𝑆𝐸 =  
  𝑌𝑖−𝑌𝑖 ′  2𝑛
𝑖=1

𝑛
        (3) 1 

 2 

𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑌 
        (4) 3 

(3) 

 

 

(4) 

 𝑌   1 

(ANDRADE JUNIOR et al., 2004). However, the 

rainfall distribution over the crop cycle was 

relatively adequate, without occurrence of long dry 

periods.  

There were 31 rainy days during the crop 

cycle, which last 123 days (November 27, 2018 to 

March 30, 2019), resulting, on average, in one 

rainfall event every four days (Figure 2A). There 

was a 13-day period without rainfall, between 

December 10 and 22, 2018, 13 to 25 days after 

sowing (DAS), in the initial development stage of 

plants, which caused production losses. There were 

no periods without rainfall longer than 7 days in the 

essential stages for grain filling. However, there was 

another dry spell at the end of physiological 

maturation, March 5 to March 20, which did not 

compromise the soybean development and yield 

(SILVA, 2011). The accumulated rainfall up to the 

day of acquisition of images, due to the passing of 

satellites, was 188.0 mm, at the passage of the 

Sentinel 2 satellite (December 16, 2018; 19 DAS), 

and 534.0 mm, at the passage of the Landsat 8 

satellite (February 24, 2019; 89 DAS) (Figure 2B). 

  
 1 

Figure 2. Daily rainfall depths over the soybean cycle (A) and accumulated rainfall depths (B) up to the passing of the 

Landsat (L) and Sentinel (S) satellites (B). Celeiro Farm, Plot A2, 2018-2019 crop season. 

Water availability is important for soybean 

crops, mainly from the flowering to the grain filling 

stage (SILVA, 2011). Water deficiency during the 

flowering (R1-R3) results in lower number of pods, 

since soybean is sensitive to water deficiency 

(CAMARGO; BRUNINI; MIRANDA, 1986). The 

flowering and grain filling stages present the highest 

water consumption; thus, they are the most critical 

stages for water deficits. The rainfall distribution was 

adequate during the soybean crop cycle, including 

the more critical stages (Figure 2), ensuring a good 

crop development and grain yield. 

 

Normalized Difference Vegetation Index (NDVI)  

 

NDVI values vary over the soybean cycle 

(Figure 3), denoting that NDVI increases as the 

plants develop, mainly, in terms of leaf area and 

shoot dry biomass weight (ALLEN; PEREIRA, 

2009). The NDVI values started to change at the 

initial stages of the soybean crop cycle. In the V2 

stage (19 DAS), the values of NDVI ranged from 0.2 

to 0.36 between sampling points. This dynamic was 

found up to the V5 stage (29 DAS).  

In the R2 stage (46 DAS), NDVI values 

started to show differences between sampling points, 

P12 presented the lowest (0.59) and P1 presented the 

highest (0.74) NDVI value. NDVI values showed 

small differences between sampling points again at 

the final stages of the crop cycle (64 DAS and 89 

DAS). These results are consistent with those of 

Crusiol et al. (2013), who evaluated the temporal 

spectral profile of soybean crops (cultivar BRS 284) 

at the main stages of the growth cycle and found the 

highest increases in NDVI values between the V2 

and R2 stages, and smaller increases after the R2 

stage, denoting a stabilization of NDVI from the R2 

to the R6 stage. 
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In the stage V2, at 19 DAS (December 16, 

2018), there were predominance of NVDI pixels 

values classified as < 0.3 (Figure 4A), with a 

percentage of 88.9% (Figure 5A), since the crop was 

at the beginning of vegetative development. A slight 

increase in NDVI pixel values was found at 29 DAS 

(stage V5) to the class of 0.2 to 0.4, due to the crop 

advanced vegetative development (Figure 4B), with 

percentages varying from 40.35% to 58.37% (Figure 

5B).  

A higher variation in NDVI values was found 

at 46 DAS (stage R2), with predominance of classes 

0.4 to 0.6, in the areas P4 to P12, and 0.6 to 0.8 in 

the areas P1, P2, and P3 (Figure 4C), with 

percentages of 38.82% to 49.38% (Figure 5C). 

However, after the establishment of the crop, there 

was a higher predominance of NDVI values in the 

classes 0.8 to 1.0, at the final stages of the soybean 

crop cycle, with percentage of 98.15%. 

According to Allen and Pereira (2009), 

variations in mean NDVI values are related to 

increases in biomass, leaf area index, and soil cover 

fraction. This was confirmed in the present study; 

higher increases in NDVI were found in these 

developmental stages. Bariani et al. (2015) found 

that NDVI values enables the identification of 

phenological stages of soybean crops and its 

temporal monitoring; they monitored irrigated 

soybean crops using a temporal series of NDVI and 

found that NDVI values vary from 0.2 to 0.85 in 

vegetative stages (V2 to V5) and from 0.54 to 0.84 in 

reproduction stages (R1 to R5). In addition, they 

found decrease in NDVI values after the beginning 

of physiological maturation (R6), which was not 

found in the present study due to the indeterminate 

growth habit of the Bonus cultivar.  

Sarmiento et al. (2020) evaluated the capacity 

of a spectral agrometeorological model to predict 

soybean grain yield in the State of Mato Grosso, 

Brazil, and found variations in NDVI over the 

phenological stages, with higher variations in 

vegetative stages (V1 and R5), maximum NDVI in 

the stage R5 (0.89), and decreases at the beginning 

of the maturation stage (R8). They also found that 

NDVI analysis can identify and monitor 

phenological stages and whether the crop 

development is within the expected biomass 

production. 

 1 
Figure 3. Normalized Difference Vegetation Index (NDVI) in the sampling points during the soybean crop cycle: at 19 

days after sowing (DAS) (December 16, 2018); 29 DAS (December 26, 2018); 46 DAS (January 12, 2019); 64 DAS 

(January 30, 2019), and 89 DAS (February 24, 2019). P1 to P12 = sampling points. 
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 1 Figure 4. Variation in Normalized Difference Vegetation Index (NDVI) predicted for the plot A2 at different 

developmental stages of soybean crops. Celeiro Farm, 2018/2019 crop season. A: December 16, 2018; B: December 26, 

2018; C: January 12, 2019; D: January 30, 2019; and E: February 24, 2019. 
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Models to predict soybean grain yield 

 

The multiple linear regression equations 

developed to predict soybean grain yield as a 

function of NDVI values, obtained from images of 

the Sentinel 2 and Landsat 8 satellites at different 

developmental stages, presented high coefficients of 

determination (R2 = 0.91 to 0.88), denoting that 91% 

to 88% of the variability in soybean grain yield can 

be explained by multiple linear regression equations 

using NDVI (Table 2). Gusso et al. (2013) evaluated 

the fit of a model for regional scale and conditions 

climatic of the State of Rio Grande do Sul, Brazil, to 

predict soybean grain yield using the EVI vegetation 

index, extracted from MODIS images and grain yield 

data obtained from the Brazilian Institute of 

Geography and Statistics (IBGE); they found that the 

model explained only 64% of the grain yield 

variability, medium fit, since they did not use grain 

yield data from field measures. 

Mercante et al. (2010) proposed linear 

regression models for the western Paraná State, 

Brazil, to predict soybean grain yield using the 

NDVI and GVI vegetation indexes from images of 

the Landsat 5/TM satellite; they found the mean 

index values (NDVI and GVI) of all images were 

more correlated to soybean grain yield than to each 

evaluation date, separately. The use of multiple 

regressions with these two vegetation indexes in all 

evaluation dates provided a better correlation with 

grain yield. 

 1 

  

  

 

 

Figure 5. Histogram of percentage distribution of Normalized Difference Vegetation Index (NDVI) values in each 

evaluation. A: December 16, 2018; B: December 26, 2018; C: January 12, 2019; D: January 30, 2019; and E: February 24, 

2019. 
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The regression equations with NDVI values 

of all images (regression 1), and images of 

intermediate and final stages of the soybean crop 

(regression 12) presented the highest R2 values 

(0.91), lowest prediction standard errors, 179.1 to 

167.1 kg ha-1, and lowest AIC (128.19 and 126.38), 

respectively (Table 2). These results were consistent 

with those obtained by Mercante et al. (2010), who 

found lower R2 values probably due to the use grain 

yield statistics of the IBGE to develop the equations 

data, whereas more accurate grain yield data, from 

harvest maps of the plot, was used in the present 

study.  

The regression equation obtained by the 

stepwise procedure denoted better grain yield 

prediction for the use of joint NDVI images of the 

stages V5-V6 and R2 (Table 2). Mercante et al. 

(2010) found better fit of regression equation to 

predict soybean grain yield for NDVI images of 

initial and full development vegetative stages, which 

is similar to the present study. Trindade et al. (2019) 

found best soybean grain yield prediction models 

using NDVI values of the stage R2. The use of 

NDVI images of reproduction stages of soybean 

crops is more capable of predicting the crop 

production potential, since there is a high correlation 

between soybean grain yield and the proper nutrient 

and water supply up to this stage (SARMIENTO et 

al., 2020). 

 

Validation of models for predicting soybean grain 

yield 

 

The validation of multiple linear regression 

models is presented in Figure 6. All models 

presented good fit for grain yield (GY) predictions, 

with RMSE values varying from 153.9 to                 

160.9 kg ha-1 (Figure 6). The lowest RMSE values 

were found for prediction models obtained with the 

regression equation 12 and stepwise, which used 

NDVI images of intermediate (V5-V6) and 

flowering (R2) stages, confirming the results 

obtained by Mercante et al. (2010). Sarmiento et al. 

(2020) found similar values, with RMSE of              

131.54 kg ha-1 and R2 = 0.72. 

The nRMSE of the validated models showed 

prediction errors from 4.24% to 4.45%, when 

compared to grain yield values measured in the field, 

denoting that the models are promising for the 

prediction of soybean grain yield. Sarmiento et al. 

(2020) found a similar nRMSE value, 3.97% for a 

spectral agrometeorological model for soybean grain 

yield prediction in Mato Grosso State, Brazil. In the 

State of Rio Grande do Sul, Gusso et al. (2013) 

found errors in soybean grain yield prediction from -

9.36% to 14.45%, higher than those found in the 

present study; however, they used for validation of a 

model for prediction of grain yield in regional scale 

using data of the IBGE. 

Silva et al. (2018) evaluated models for 

identification of the resistance of soybean cultivars 

to water stress and established the following nRMSE 

ranges to assess the quality of validation of the 

models: excellent, when nRMSE is lower than 10%; 

good, between 10% and 20%; reasonable, between 

20% and 30%, and bad when higher than 30%. 

Considering this criterion, the models were 

promising, mainly the model generated by the 

stepwise procedure, which fits into the excellent 

category and can be applied for the prediction of 

Table 2. Multiple linear regression equations for predicting soybean grain yield based on the Normalized Difference 

Vegetation Index (NDVI), at different stages of the crop cycle. 

Reg. Intercept NDVI-1 NDVI-2 NDVI-3 NDVI-4 NDVI-5 R2 PSE AIC 

1 10013.01 ns 2511.45 ns -9470.67 ns 11817.33* 6959.04 ns -21154.59 ns 0.91 179.07 128.19 

2 - 4628.38 ns 2311.45 ns -8016.53 ns 10689.25* 3147.09 ns - 0.88 184.73 128.79 

3 - 2472.14 ns 2109.49 ns -8230.50 ns 11690.95 ns - - 0.88 174.63 127.04 

4 4599.10** -21409.52* 16255.48** - - - 0.66 278.36 137.64 

5 2002.19 ns 6206.77 ns - - - - 0.09 434.42 147.59 

6 1644.52 ns - 6812.42* - - - 0.40 351.17 142.48 

7 -1079.53 ns - - 6920.73** - - 0.79 206.80 129.77 

8 - 16158.27** - - - 22895.01** - 0.74 231.70 132.50 

9 - 42664.66* - - - - 53453.67* 0.37 360.63 143.12 

10 - 6862.05 ns - - 4716.39 ns 8423.39 ns - 0.81 207.33 130.57 

11 - 2641.14 ns - - 4703.08 ns 9900.46 ns -6334.36 ns 0.82 218.55 132.42 

12 10624.52 ns - -7488.29* 11128.70* 6788.65 ns - 21044.91 ns 0.91 167.08 126.38 

Step. - 1979.33* - -6556.00* 11074.55** - - 0.88 165.36 125.14 

 1 
Reg.: number of the regression equation; Step.: stepwise; NDVI-1: NDVI image of November 27, 2018 (sowing); NDVI-2: 

NDVI image of December 16, 2018 (V2); NDVI-3: NDVI image of December 26, 2018 (V5 and V6); NDVI-4: NDVI 

image of January 12, 2019 (R2); NDVI-5: NDVI image January 30, 2019 (R3);  R2: coefficient of determination;  PSE: 

prediction standard error (kg ha-1); AIC: Akaike Information Criterion; Significance level of coefficients of equations by the 

t test: ***: < 1% significance level; **: 1% significance level; *: 5% significance level; and ns: not significant. 
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soybean grain yield in the study region. However, 

these promising models should be evaluated in other 
farms of the region to confirm the results presented 

and regionalization of the models.  

  

  

 1 
Figure 6. Validation of regression models with the best fit for predicting soybean grain yield. 

CONCLUSION 
 

The linear regression models developed using 

the Normalized Difference Vegetation Index 

(NDVI), extracted from images of the Landsat 8 and 

Sentinel 2 satellites for soybean plants at V5-V6 and 

R2 developmental stages was promising for 

predicting soybean grain yield, with mean error of 

predictions of 153.9 kg ha-1, corresponding to 4.2% 

when compared to the data from field measures. 
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